Reversible C-C bond formation between redox-active pyridine ligands in iron complexes.

This manuscript describes the formally iron(I) complexes L(Me)Fe(Py-R)(2) (L(Me) = bulky β-diketiminate; R = H, 4-tBu), in which the basal pyridine ligands preferentially accept significant unpaired spin density. Structural, spectroscopic, and computational studies on the complex with 4-tert-butylpyridine ((tBu)py) indicate that the S = 3/2 species is a resonance hybrid between descriptions as (a) high-spin iron(II) with antiferromagnetic coupling to a pyridine anion radical and (b) high-spin iron(I). When the pyridine lacks the protection of the tert-butyl group, it rapidly and reversibly undergoes radical coupling reactions that form new C-C bonds. In one reaction, the coordinated pyridine couples to triphenylmethyl radical, and in another, it dimerizes to give a pyridine-derived dianion that bridges two iron(II) ions. The rapid, reversible C-C bond formation in the dimer stores electrons from the formally reduced metal as a C-C bond in the ligands, as demonstrated by using the coupled diiron(II) complex to generate products that are known to come from iron(I) precursors.

[1]  P. Banerjee,et al.  Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series. , 2011, Inorganic Chemistry.

[2]  T. Tilley,et al.  Transition metal complexes containing donor-stabilized silylyne ligands. Reductive dimerization to a silylene complex , 1992 .

[3]  E. Lewis,et al.  The triphenylmethyl radical: equilibrium measurements and the reaction with thiophenol , 1978 .

[4]  F. Neese,et al.  Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. , 2009, Inorganic chemistry.

[5]  F. Neese,et al.  Electronic structure of mononuclear bis(1,2-diaryl-1,2-ethylenedithiolato)iron complexes containing a fifth cyanide or phosphite ligand: a combined experimental and computational study. , 2006, Inorganic chemistry.

[6]  C. Cummins,et al.  Synthesis and reversible reductive coupling of cationic, dinitrogen-derived diazoalkane complexes. , 2009, Inorganic chemistry.

[7]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[8]  E. Constable Homoleptic Complexes of 2,2′-Bipyridine , 1989 .

[9]  T. Cundari,et al.  Synthetic approaches to (smif)2Ti (smif = 1,3-di-(2-pyridyl)-2-azaallyl) reveal redox non-innocence and C-C bond-formation. , 2012, Inorganic chemistry.

[10]  P. Holland,et al.  A bridging hexazene (RNNNNNNR) ligand from reductive coupling of azides. , 2008, Journal of the American Chemical Society.

[11]  J. Ziller,et al.  Ligand Influence on the Redox Chemistry of Organosamarium Complexes: Experimental and Theoretical Studies of the Reactions of (C5Me5)2Sm(THF)2 and (C4Me4P)2Sm with Pyridine and Acridine , 2012 .

[12]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[13]  P. Diaconescu,et al.  Ring-opening reactions of aromatic N-heterocycles by scandium and yttrium alkyl complexes. , 2008, Journal of the American Chemical Society.

[14]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[15]  K. Wieghardt,et al.  Molecular and Electronic Structures of Iron Complexes Containing N,S-Coordinated, Open-Shell o-Iminothionebenzosemiquinonate(1−) π Radicals , 2003 .

[16]  Kasper P. Jensen,et al.  Bioinorganic chemistry modeled with the TPSSh density functional. , 2008, Inorganic chemistry.

[17]  G. Saito,et al.  First radical cation salt of paramagnetic transition metal complex containing TTF as ligand, [Cu(II)(hfac)2(TTF-py)2](PF6) x 2CH2Cl2 (hfac = hexafluoroacetylacetonate and TTF-py = 4-(2-tetrathiafulvalenyl-ethenyl)pyridine). , 2003, Inorganic chemistry.

[18]  J. Ziller,et al.  Pi*-pi* bonding interactions generated by halogen oxidation of zirconium(IV) redox-active ligand complexes. , 2008, Journal of the American Chemical Society.

[19]  Frank Neese,et al.  Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. , 2007, The Journal of chemical physics.

[20]  David J. Williams,et al.  Nuclear magnetic resonance studies of a radical-radical dimerization reaction , 1967 .

[21]  A. F. Heyduk,et al.  C-C bond-forming reductive elimination from a zirconium(IV) redox-active ligand complex. , 2006, Journal of the American Chemical Society.

[22]  H. Abruña,et al.  Electrocatalysis of CO2 Reduction in Aqueous Media at Electrodes Modified with Electropolymerized Films of Vinylterpyridine Complexes of Transition Metals , 1995 .

[23]  K. Wieghardt,et al.  Bis(imino)pyridine iron dinitrogen compounds revisited: differences in electronic structure between four- and five-coordinate derivatives. , 2012, Inorganic chemistry.

[24]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[25]  W. Kaim,et al.  Manifestations of noninnocent ligand behavior. , 2011, Inorganic chemistry.

[26]  C. Pierpont Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands , 2001 .

[27]  K. Ziegler,et al.  Zur Kenntnis des „dreiwertigen”︁ Kohlenstoffs. VIII. Das Molekularvolum des Hexaphenyl‐äthans und einiger seiner Analogen , 1929 .

[28]  P. Fanwick,et al.  Reductive elimination pathways to low valent titanium aryl oxide complexes , 1987 .

[29]  A. Deeming,et al.  A diruthenium complex containing an ortho-metallated bipyridyl ligand formed directly from [Ru3(CO)12] and pyridine , 1992 .

[30]  K. Wieghardt,et al.  Tuning the oxidation level, the spin state, and the degree of electron delocalization in homo- and heteroleptic bis(alpha-diimine)iron complexes. , 2009, Journal of the American Chemical Society.

[31]  J. Ziller,et al.  "Oxidative addition" to a Zirconium(IV) redox-active ligand complex. , 2005, Inorganic chemistry.

[32]  P. Ghosh,et al.  Synthesis of ruthenium carbonyl complexes with phosphine or substituted Cp ligands, and their activity in the catalytic deoxygenation of 1,2-propanediol. , 2009, Inorganic Chemistry.

[33]  G. Olah,et al.  Carbanions. 5. Preparation and proton and carbon-13 NMR spectroscopic structural study of the 4-hydridopyridyl anion and 4,4'-bis(hydridopyridyl) dianion. Absence of homoazacyclopentadienyl ion character , 1981 .

[34]  W. Kaim The Shrinking World of Innocent Ligands: Conventionaland Non‐Conventional Redox‐Active Ligands , 2012 .

[35]  A. Piskunov,et al.  The oxidation of 2-alkoxy-3,6-di-tert-butylphenols. The reversible dimerization of 2-alkoxy-3,6-di-tert-butylphenoxy radicals , 2005 .

[36]  S. Kremer,et al.  The lower excited electronic states of singly and doubly reduced 2,2′-bipyridine , 1970 .

[37]  Bas de Bruin,et al.  Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions , 2012 .

[38]  K. Wieghardt,et al.  Molecular and Electronic Structure of Five-Coordinate Complexes of Iron(II/III) Containing o-Diiminobenzosemiquinonate(1−) π Radical Ligands , 2005 .

[39]  D. Nocera,et al.  Multielectron chemistry of zinc porphyrinogen: a ligand-based platform for two-electron mixed valency. , 2004, Journal of the American Chemical Society.

[40]  Sabine Tm,et al.  Hexamethylenetetramine: extinction and thermal vibrations from neutron diffraction at six temperatures , 1995 .

[41]  C. Rao,et al.  Radical anions of pyridine derivatives , 1971 .

[42]  L. Yellowlees,et al.  Spectro-electrochemical studies on tris-bipyridyl ruthenium complexes; ultra-violet, visible, and near-infrared spectra of the series [Ru(bipyridyl)3]2+/1+/0/1– , 1981 .

[43]  Frank Neese,et al.  A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry , 2006, JBIC Journal of Biological Inorganic Chemistry.

[44]  R. Hicks Stable radicals : fundamentals and applied aspects of odd-electron compounds , 2010 .

[45]  O. Maury,et al.  4-(2-Tetrathiafulvalenyl-ethenyl)pyridine (TTF-CH=CH-Py) radical cation salts containing poly(beta-diketonate) rare earth complexes: synthesis, crystal structure, photoluminescent and magnetic properties. , 2009, Inorganic chemistry.

[46]  K. Wieghardt,et al.  Electronic structure of 2,2'-bipyridine organotransition-metal complexes. Establishing the ligand oxidation level by density functional theoretical calculations. , 2011, Inorganic chemistry.

[47]  J. Ziller,et al.  Group IV imino-semiquinone complexes obtained by oxidative addition of halogens. , 2008, Inorganic chemistry.

[48]  T. Cundari,et al.  Unusual electronic features and reactivity of the dipyridylazaallyl ligand: characterizations of (smif)2M [M = Fe, Co, Co+, Ni; smif = {(2-py)CH}2N] and [(TMS)2NFe]2(smif)2. , 2009, Journal of the American Chemical Society.

[49]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[50]  Han Sen Soo,et al.  A Sterically Demanding Enolate Ligand: Tantalum Ligation and Pyridine Coupling , 2004 .

[51]  F. Neese,et al.  Iron(II) complexes with redox-active tetrazene (RNNNNR) ligands. , 2009, Inorganic chemistry.

[52]  W. Evans,et al.  Reductive coupling of pyridazine and benzaldehyde azine and reduction of bipyridine by samarium complex (C5Me5)2Sm(THF)2 , 1989 .

[53]  Patrick L. Holland,et al.  Studies of low-coordinate iron dinitrogen complexes. , 2006, Journal of the American Chemical Society.

[54]  Bradley M. Wile,et al.  Reduction chemistry of aryl- and alkyl-substituted bis(imino)pyridine iron dihalide compounds: molecular and electronic structures of [(PDI)2Fe] derivatives. , 2009, Inorganic chemistry.

[55]  F. Jaroschik,et al.  Synthesis and Reactivity of Organometallic Complexes of Divalent Thulium with Cyclopentadienyl and Phospholyl Ligands , 2007 .

[56]  C. Raston,et al.  Solution stabilized monomeric dialkyl-aluminium and -gallium species, [MR2]. (R = 2-C(SiMe3)2C5H4N): from reduction of MR2Cl. Crystal structure of GaR2Cl , 1990 .

[57]  S. Minteer,et al.  Electrocatalytic reductive dimerization of the 2,2′-bipyridyl tungsten alkylidyne complex [W(CC6H4NMe2-4)(NCMe)(CO)2{κ2-2,2′-(NC5H4)2}]+ , 2006 .

[58]  T. Hambley,et al.  Diamagnetic .dblarw. paramagnetic equilibria in solutions of bis(dialkylphosphino)ethane complexes of iron , 1988 .

[59]  G. Wilkinson,et al.  Comprehensive coordination chemistry : the synthesis, reactions, properties & applications of coordination compounds , 1987 .

[60]  J. Boncella,et al.  Coordination of 2,2'-bipyridyl and 1,10-phenanthroline to substituted ytterbocenes: An experimental investigation of spin coupling in lanthanide complexes , 2002 .

[61]  Patrick L. Holland,et al.  A sulfido-bridged diiron(II) compound and its reactions with nitrogenase-relevant substrates. , 2004, Journal of the American Chemical Society.

[62]  Patrick L. Holland,et al.  Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex. , 2011, Journal of the American Chemical Society.

[63]  Patrick L. Holland,et al.  Catalytic nitrene transfer from an imidoiron(III) complex to form carbodiimides and isocyanates. , 2009, Chemical communications.

[64]  Connie C. Lu,et al.  Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system. , 2008, Journal of the American Chemical Society.

[65]  Patrick L. Holland,et al.  Coordination-number dependence of reactivity in an imidoiron(III) complex. , 2006, Angewandte Chemie.

[66]  Marisa J. Monreal,et al.  Reversible C-C coupling in a uranium biheterocyclic complex. , 2010, Journal of the American Chemical Society.

[67]  L. Yellowlees,et al.  Ligand-ligand inter-valence charge-transfer absorption in reduced ruthenium(II) bipyridine complexes , 1982 .

[68]  D. Nocera,et al.  Multielectron redox chemistry of iron porphyrinogens. , 2005, Journal of the American Chemical Society.

[69]  K. Wieghardt,et al.  A step beyond the Feltham-Enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)-(NO)- description of Tp*M(NO) (M = Co, Ni). , 2011, Journal of the American Chemical Society.

[70]  K. Hardcastle,et al.  Redox-active ligand-mediated oxidative addition and reductive elimination at square planar cobalt(III): multielectron reactions for cross-coupling. , 2010, Journal of the American Chemical Society.

[71]  K. Wieghardt,et al.  Dinuclear Bis(1,2-diaryl-1,2-ethylenedithiolato)iron complexes: [FeIII2(L)4]n (n = 2-, 1-, 0, 1+). , 2006, Inorganic chemistry.

[72]  T. Fox,et al.  Carbon-Carbon Bonds of Manganese Half-Sandwich Complexes for Electron Reservoir Functions , 2004 .

[73]  F. Neese,et al.  A Reduced (β-Diketiminato)iron Complex with End-On and Side-On Nitriles: Strong Backbonding or Ligand Non-Innocence? , 2012 .

[74]  W. Kaim The transition metal coordination chemistry of anion radicals , 1987 .

[75]  B. Scott,et al.  Synthesis and Structural Characterization of the First Uranium Cluster Containing an Isopolyoxometalate Core , 2001 .

[76]  K. Wieghardt,et al.  Molecular and electronic structures of iron(II)/(III) complexes containing N,S-coordinated, closed-shell o-aminothiophenolato(1-) and o-iminothiophenolato(2-) ligands. , 2003, Inorganic chemistry.

[77]  Wenliang Huang,et al.  Scandium arene inverted-sandwich complexes supported by a ferrocene diamide ligand. , 2011, Journal of the American Chemical Society.

[78]  S. Kume,et al.  Chemistry of radical anions of heterocyclic aromatics. I. Electron spin resonance and electronic spectra , 1968 .

[79]  F. Neese,et al.  Molecular and electronic structures of tetrahedral complexes of nickel and cobalt containing N,N'-disubstituted, bulky o-diiminobenzosemiquinonate(1-) π-radical ligands , 2006 .

[80]  R. W. Fessenden,et al.  ESR Spectra of radicals produced by reduction of pyridine and pyrazine , 1973 .

[81]  A. R. Forrester,et al.  Organic chemistry of stable free radicals , 1968 .

[82]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[83]  W. Neumann,et al.  Sterically hindered free radicals. 14. Substituent-dependent stabilization of para-substituted triphenylmethyl radicals , 1986 .

[84]  K. Wieghardt,et al.  Redox-noninnocence of the S,S'-coordinated ligands in bis(benzene-1,2-dithiolato)iron complexes. , 2005, Journal of the American Chemical Society.

[85]  E. M. Schubert Utilizing the Evans method with a superconducting NMR spectrometer in the undergraduate laboratory , 1992 .

[86]  F. Neese,et al.  Electronic structures and spectroscopy of the electron transfer series [Fe(NO)L2]z (z = 1+, 0, 1-, 2-, 3-; L = dithiolene). , 2011, Inorganic chemistry.

[87]  F. Neese,et al.  Comparison of two efficient approximate Hartee–Fock approaches , 2009 .

[88]  F. Neese,et al.  Square planar vs tetrahedral coordination in diamagnetic complexes of nickel(II) containing two bidentate pi-radical monoanions. , 2005, Inorganic chemistry.

[89]  D. Nocera,et al.  Ground- and excited-state reactivity of iron porphyrinogens. , 2007, Inorganic chemistry.

[90]  M. N. Bochkarev,et al.  Reduction of 2,5-di-tert-butylcyclopentadienone and pyridine with thulium diiodide. Structures of the complexes TmI2(THF)2[η5-But2C5H2O]TmI2(THF)3 and [TmI2(C5H5N)4]2(μ2-N2C10H10) , 2003 .

[91]  P. Chirik Preface: Forum on redox-active ligands. , 2011, Inorganic chemistry.

[92]  P. Budzelaar,et al.  Multiple pathways for dinitrogen activation during the reduction of an Fe Bis(iminepyridine) complex. , 2008, Inorganic chemistry.

[93]  C. D. Schmulbach,et al.  Solutions of alkali metals in anhydrous pyridine , 1968 .

[94]  F. Neese,et al.  Quantum Chemistry and Mssbauer Spectroscopy , 2011 .

[95]  R. J. Myers,et al.  Electron spin resonance spectra of the radical anions of pyridine and related nitrogen heterocyclics , 1967 .

[96]  J. Vela,et al.  Mössbauer and computational study of an N2-bridged diiron diketiminate complex: parallel alignment of the iron spins by direct antiferromagnetic exchange with activated dinitrogen. , 2006, Journal of the American Chemical Society.

[97]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[98]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[99]  F. Neese,et al.  Molecular and electronic structures of bis-(o-diiminobenzosemiquinonato)metal(II) complexes (Ni, Pd, Pt), their monocations and -anions, and of dimeric dications containing weak metal-metal bonds. , 2003, Journal of the American Chemical Society.

[100]  F. Marchetti,et al.  Reversible Reductive Dimerization of Diiron µ-Vinyl Complex via C–C Coupling: Characterization and Reactivity of the Intermediate Radical Species , 2011 .

[101]  F. Grandjean,et al.  Experimental and computational study of the structural and electronic properties of Fe(II)(2,2'-bipyridine)(mes)2 and [Fe(II)(2,2'-bipyridine)(mes)2]-, a complex containing a 2,2'-bipyridyl radical anion. , 2010, Inorganic chemistry.

[102]  R. Peacock,et al.  Electronic absorption spectra of the iron(II) complexes of 2,2'-bipyridine, 2,2'-bipyrimidine, 1,10-phenanthroline, and 2,2':6',2''-terpyridine and their reduction products , 1992 .

[103]  K. Wieghardt,et al.  Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3-0), and the remarkable electronic structure of [Cr(tpy)2]1-. , 2012, Inorganic chemistry.

[104]  W. Kaim,et al.  Do Cp(CO)2Mn Fragments Stabilize Radicals , 1985 .

[105]  Frank Neese,et al.  Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems , 2004 .

[106]  Jarl Ivar van der Vlugt,et al.  Cooperative catalysis with first-row late transition metals , 2012 .

[107]  F. Neese,et al.  Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. , 2006, Journal of the American Chemical Society.

[108]  K. Wieghardt,et al.  Reduced N-alkyl substituted bis(imino)pyridine cobalt complexes: molecular and electronic structures for compounds varying by three oxidation states. , 2010, Inorganic chemistry.

[109]  W. Kaim Chemical and electrochemical reduction of pentacarbonyl(4-cyanopyridine) complexes of chromium(0), molybdenum(0), and tungsten(0) , 1984 .

[110]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[111]  W. M. Davis,et al.  LOW-COORDINATE IRON COMPLEXES STABILIZED BY N-(TERT-HYDROCARBYL)ANILIDE LIGATION : ADDUCT FORMATION, CHEMICAL OXIDATION, AND NITRIC OXIDE COMPLEXATION , 1996 .

[112]  F. Girgsdies,et al.  Synthesis and Structure of the First Lanthanide Complex with the Bridging, Antiaromatic 2,2′‐Bipyridine Dianion: [{Yb(μ2‐N2C10H8)(thf)2}3] , 1999 .

[113]  C. Creutz Bipyridine Radical Ions , 1982 .

[114]  T. Betley,et al.  Catalytic C-H bond amination from high-spin iron imido complexes. , 2011, Journal of the American Chemical Society.

[115]  K. Wieghardt,et al.  Synthesis and molecular and electronic structures of reduced bis(imino)pyridine cobalt dinitrogen complexes: ligand versus metal reduction. , 2010, Journal of the American Chemical Society.

[116]  Y. Kitagawa,et al.  Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: comparison of broken-symmetry approaches , 2000 .