Kähler groups, quasi‐projective groups and 3‐manifold groups

We prove two results relating 3-manifold groups to fundamental groups occurring in complex geometry. Let N be a compact, connected, orientable 3-manifold. If N has non-empty, toroidal boundary, and \pi_1(N) is a Kaehler group, then N is the product of a torus with an interval. On the other hand, if N has either empty or toroidal boundary, and \pi_1(N) is a quasi-projective group, then all the prime components of N are graph manifolds.

[1]  ON THE INTERSECTION OF RATIONAL TRANSVERSAL SUBTORI , 2007, Journal of the Australian Mathematical Society.

[2]  Shicheng Wang,et al.  Graph manifolds with non-empty boundary are covered by surface bundles , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Matthias Aschenbrenner,et al.  3-Manifold Groups , 2012, 1205.0202.

[4]  C. McMullen,et al.  The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology , 2002 .

[5]  Daniel T. Wise,et al.  Special Cube Complexes , 2008, The Structure of Groups with a Quasiconvex Hierarchy.

[6]  D. Kotschick Three-manifolds and Kähler groups , 2010, 1011.4084.

[7]  R. Thom,et al.  Sur le groupe fondamental d'une variété kählérienne , 1989 .

[8]  Alexander I. Suciu Fundamental groups, Alexander invariants, and cohomology jumping loci , 2009, 0910.1559.

[9]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[10]  Stefan Friedl,et al.  The virtual fibering theorem for 3-manifolds , 2012, 1210.4799.

[11]  H. Seshadri,et al.  3-MANIFOLD GROUPS, KÄHLER GROUPS AND COMPLEX SURFACES , 2011, 1101.1162.

[12]  Alexander I. Suciu,et al.  Quasi-Kähler groups, 3-manifold groups, and formality , 2008, Mathematische Zeitschrift.

[13]  P. Py Coxeter groups and Kähler groups , 2012, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  D. Wise,et al.  Graph manifolds with boundary are virtually special , 2011, 1110.3513.

[15]  M. Ramachandran,et al.  On the fundamental group of a compact Kähler manifold , 1992 .

[16]  Enrique Artal Bartolo,et al.  Characteristic varieties of quasi-projective manifolds and orbifolds , 2010, 1005.4761.

[17]  I. Agol Criteria for virtual fibering , 2007, 0707.4522.

[18]  Charles F. Miller,et al.  The Subgroups of Direct Products of Surface Groups , 2002 .

[19]  Alexander I. Suciu,et al.  Which 3-manifold groups are K\"ahler groups? , 2007, 0709.4350.

[20]  V. Marković,et al.  Immersing almost geodesic surfaces in a closed hyperbolic three manifold , 2009, 0910.5501.

[21]  J. Amorós Fundamental Groups of Compact Kähler Manifolds , 1996 .

[22]  David Gabai,et al.  Foliations and the topology of 3-manifolds , 1987 .

[23]  THREE MANIFOLD GROUPS , KÄHLER GROUPS AND COMPLEX SURFACES , 2011 .

[24]  Alexander I. Suciu,et al.  Alexander Polynomials: Essential Variables and Multiplicities , 2007, 0706.2499.

[25]  Alexander I. Suciu,et al.  Topology and geometry of cohomology jump loci , 2009, 0902.1250.

[26]  J. Stallings On fibering certain 3-manifolds , 1961 .

[27]  D. Wise From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry , 2012 .

[28]  D. Arapura,et al.  Solvable Fundamental Groups of Algebraic Varieties and Käler Manifolds , 1997, Compositio Mathematica.

[29]  Alexander Stratifications of Character Varieties , 1996, alg-geom/9602004.

[30]  Geometry of cohomology support loci for local systems I , 1996, alg-geom/9612006.

[31]  John Hempel,et al.  RESIDUAL FINITENESS FOR 3-MANIFOLDS , 1987 .

[32]  Alexander I. Suciu,et al.  Intersections of translated algebraic subtori , 2011, 1109.1023.

[33]  Alexander I. Suciu Characteristic Varieties and Betti Numbers of Free Abelian Covers , 2011, International Mathematics Research Notices.

[34]  Alexandru Dimca CHARACTERISTIC VARIETIES AND CONSTRUCTIBLE SHEAVES , 2007 .

[35]  Yi Liu Virtual cubulation of nonpositively curved graph manifolds , 2011, 1110.1940.

[36]  Botong Wang,et al.  Cohomology jump loci of quasi-projective varieties , 2012, 1211.3766.

[37]  William P. Thurston,et al.  A norm for the homology of 3-manifolds , 1986 .

[38]  D. Wise,et al.  Mixed 3-manifolds are virtually special , 2012, 1205.6742.