Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology

The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear 13C and 15N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.

[1]  P. Schmieder,et al.  Large‐scale purification of ribosome‐nascent chain complexes for biochemical and structural studies , 2009, FEBS letters.

[2]  J. Puglisi,et al.  Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. , 2000, Journal of molecular biology.

[3]  Kutti R Vinothkumar,et al.  Solid‐State Magic‐Angle Spinning NMR of Outer‐Membrane Protein G from Escherichia coli , 2005, Chembiochem : a European journal of chemical biology.

[4]  I. Bertini,et al.  On the use of ultracentrifugal devices for sedimented solute NMR , 2012, Journal of biomolecular NMR.

[5]  H. Noller,et al.  Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. , 2009, RNA.

[6]  R. Griffin,et al.  Dynamic nuclear polarization with a water-soluble rigid biradical. , 2012, Journal of the American Chemical Society.

[7]  R. Griffin,et al.  Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems , 1998 .

[8]  C. Dobson,et al.  Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. , 2011, Journal of the American Chemical Society.

[9]  M. Akke,et al.  Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. , 2004, Biochemistry.

[10]  R. Griffin,et al.  Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. , 2006, Journal of the American Chemical Society.

[11]  M. Akke,et al.  The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. , 2007, Journal of molecular biology.

[12]  M. Goldman,et al.  Principles of dynamic nuclear polarisation , 1978 .

[13]  R. Griffin,et al.  Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. , 2010, Physical chemistry chemical physics : PCCP.

[14]  H. Oschkinat,et al.  Backbone and Side‐Chain 13C and 15N Signal Assignments of the α‐Spectrin SH3 Domain by Magic Angle Spinning Solid‐State NMR at 17.6 Tesla , 2001, Chembiochem : a European journal of chemical biology.

[15]  M. Lorch,et al.  Dynamic nuclear polarization-enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted Sec translocon. , 2011, Journal of the American Chemical Society.

[16]  C. Gualerzi,et al.  Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. , 1988, European journal of biochemistry.

[17]  D. Waugh Genetic tools for selective labeling of proteins with alpha-15N-amino acids. , 1996, Journal of biomolecular NMR.

[18]  Ivano Bertini,et al.  Solid-state NMR of proteins sedimented by ultracentrifugation , 2011, Proceedings of the National Academy of Sciences.

[19]  Andreas Hunkeler,et al.  A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. , 2012, Angewandte Chemie.

[20]  U. Bommer Ribosomes and polysomes , 1997 .

[21]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[22]  R. Griffin,et al.  Resolution and polarization distribution in cryogenic DNP/MAS experiments. , 2010, Physical chemistry chemical physics : PCCP.

[23]  R. Tycko,et al.  Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure , 2006, Proceedings of the National Academy of Sciences.

[24]  C. Copéret,et al.  Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. , 2012, Chemical communications.

[25]  F. Pochon,et al.  Rotational diffusion of Escherichia coli ribosomes. I. - Free 70 S, 50 S and 30 S particles. , 1977, Biochimie.

[26]  W. T. Franks,et al.  Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR , 2011, Journal of biomolecular NMR.

[27]  J. Cate,et al.  Structural basis for protein synthesis: snapshots of the ribosome in motion. , 2012, Current opinion in structural biology.

[28]  R. Riek,et al.  Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy , 2010, Proceedings of the National Academy of Sciences.

[29]  A. Chirkova,et al.  Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis , 2011, Nature Protocols.

[30]  D. E. Anderson,et al.  Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. , 1989, Methods in enzymology.

[31]  C. Dobson,et al.  Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. M. Westler,et al.  A relational database for sequence-specific protein NMR data , 1991, Journal of biomolecular NMR.

[33]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[34]  I. Bertini,et al.  NMR properties of sedimented solutes. , 2012, Physical chemistry chemical physics : PCCP.

[35]  J. Hershey,et al.  Binding of Escherichia coli protein synthesis initiation factor IF1 to 30S ribosomal subunits measured by fluorescence polarization. , 1986, Biochemistry.

[36]  H. Oschkinat,et al.  Backbone and Side Chain 13 C and 15 N Resonance Assignments of the a-Spectrin SH 3 Domain by Magic Angle Spinning Solid State NMR at 17.6 Tesla. , 2001 .

[37]  W. T. Franks,et al.  The effect of biradical concentration on the performance of DNP-MAS-NMR. , 2012, Journal of magnetic resonance.

[38]  Beat H. Meier,et al.  Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core , 2008, Science.

[39]  R. Cogdell,et al.  Heteronuclear 2D-correlations in a uniformly [13C, 15N] labeled membrane-protein complex at ultra-high magnetic fields , 2001, Journal of biomolecular NMR.

[40]  Cinque S. Soto,et al.  Structure of the Amantadine Binding Site of Influenza M2 Proton Channels In Lipid Bilayers , 2010, Nature.

[41]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[42]  S. Cavagnero,et al.  Protein folding at the exit tunnel. , 2011, Annual review of biophysics.

[43]  Kurt W Zilm,et al.  Preparation of protein nanocrystals and their characterization by solid state NMR. , 2003, Journal of magnetic resonance.

[44]  Lisa D. Cabrita,et al.  Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[45]  Shang-Te Danny Hsu,et al.  Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[46]  J. Tommassen,et al.  Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. , 2012, Angewandte Chemie.

[47]  Daniel N. Wilson The A–Z of bacterial translation inhibitors , 2009, Critical reviews in biochemistry and molecular biology.

[48]  B. Wittmann-Liebold Ribosomal Proteins: Their Structure and Evolution , 1986 .

[49]  C. Angell Liquid fragility and the glass transition in water and aqueous solutions. , 2002, Chemical reviews.

[50]  J. Frank,et al.  Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. , 2000, Methods in enzymology.

[51]  R. Griffin,et al.  TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. , 2006, Journal of the American Chemical Society.

[52]  D. Görlich,et al.  Amyloid-like interactions within nucleoporin FG hydrogels , 2010, Proceedings of the National Academy of Sciences.

[53]  Probing side-chain dynamics of a ribosome-bound nascent chain using methyl NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[54]  Sandrine Gerber-Lemaire,et al.  Fractional spin-labeling of polymers for enhancing NMR sensitivity by solvent-free dynamic nuclear polarization. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  V. Vitzthum,et al.  Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. , 2011, Journal of the American Chemical Society.

[56]  Judith Herzfeld,et al.  Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR , 2009, Proceedings of the National Academy of Sciences.

[57]  J. Freed,et al.  Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. , 2012, Journal of magnetic resonance.

[58]  R. Griffin,et al.  High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR , 2008, Applied magnetic resonance.

[59]  C. Gualerzi,et al.  The structure of the translational initiation factor IF1 from E.coli contains an oligomer‐binding motif , 1997, The EMBO journal.

[60]  Douglas C. Maus,et al.  Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. , 1997, Science.

[61]  Geoffrey Bodenhausen,et al.  Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR. , 2012, Chemical communications.