The Visual Object Tracking VOT2015 Challenge Results

The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.

[1]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  J.M. Ferryman,et al.  PETS Metrics: On-Line Performance Evaluation Service , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[3]  Fernando De la Torre,et al.  Supervised Descent Method and Its Applications to Face Alignment , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[6]  Jiri Matas,et al.  Robust scale-adaptive mean-shift for tracking , 2013, Pattern Recognit. Lett..

[7]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[12]  M. Kristan,et al.  Entropy Based Measure of Camera Focus , 2004 .

[13]  Jae-Yeong Lee,et al.  Visual tracking by partition-based histogram backprojection and maximum support criteria , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[14]  Zhenyu He,et al.  The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge Results , 2016, ECCV Workshops.

[15]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[16]  Stefanos Zafeiriou,et al.  Incremental Face Alignment in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[18]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[19]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Jiri Matas,et al.  Robustifying the Flock of Trackers , 2011 .

[22]  Guna Seetharaman,et al.  Persistent target tracking using likelihood fusion in wide-area and full motion video sequences , 2012, 2012 15th International Conference on Information Fusion.

[23]  Jacques Verly,et al.  The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences , 2003 .

[24]  Matej Kristan Multivariate Online Kernel Density Estimation , 2010 .

[25]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jiri Matas,et al.  Long-Term Tracking through Failure Cases , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[28]  Cordelia Schmid,et al.  Online Object Tracking with Proposal Selection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[30]  Philip H. S. Torr,et al.  The Importance of Estimating Object Extent when Tracking with Correlation Filters , 2015 .

[31]  Jing Zhang,et al.  Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[33]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[34]  Guna Seetharaman,et al.  Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video , 2010, 2010 13th International Conference on Information Fusion.

[35]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[36]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[37]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[38]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[40]  Jiri Matas,et al.  The Enhanced Flock of Trackers , 2014, Registration and Recognition in Images and Videos.

[41]  Jiri Matas,et al.  The VOT2013 challenge: overview and additional results , 2014 .

[42]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[43]  Atilla Baskurt,et al.  Classifying Global Scene Context for On-line Multiple Tracker Selection , 2015, BMVC.

[44]  Ming Tang,et al.  Multi-kernel Correlation Filter for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[45]  Jiri Matas,et al.  Online adaptive hidden Markov model for multi-tracker fusion , 2015, Comput. Vis. Image Underst..

[46]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[48]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[49]  Tony P. Pridmore,et al.  TRIC-track: Tracking by Regression with Incrementally Learned Cascades , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[50]  Hongdong Li,et al.  Tracking Randomly Moving Objects on Edge Box Proposals , 2015, ArXiv.

[51]  Guna Seetharaman,et al.  Robust Orientation and Appearance Adaptation for Wide-Area Large Format Video Object Tracking , 2012, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.

[52]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Jiri Matas,et al.  Tracking the Untrackable: How to Track When Your Object Is Featureless , 2012, ACCV Workshops.

[54]  Stefan Duffner,et al.  Using Discriminative Motion Context for Online Visual Object Tracking , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[55]  Dit-Yan Yeung,et al.  Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data , 2014, ICML.

[56]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[58]  Alfredo Petrosino,et al.  Clustering Local Motion Estimates for Robust and Efficient Object Tracking , 2014, ECCV Workshops.

[59]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[60]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[61]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[62]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[63]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[64]  Ales Leonardis,et al.  Is my new tracker really better than yours? , 2014, IEEE Winter Conference on Applications of Computer Vision.

[65]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[66]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[67]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[68]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[69]  Tony P. Pridmore,et al.  MTS: A Multiple Temporal Scale Tracker Handling Occlusion and Abrupt Motion Variation , 2014, ACCV.

[70]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[73]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[75]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[77]  Michael Felsberg,et al.  Enhanced Distribution Field Tracking Using Channel Representations , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[78]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[79]  Shuicheng Yan,et al.  Dense Neighborhoods on Affinity Graph , 2011, International Journal of Computer Vision.

[80]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[81]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.