Modular flux transfer

The highest fidelity images to date of complex materials like cloth use extremely high-resolution volumetric models. However, rendering such complex volumetric media is expensive, with brute-force path tracing often the only viable solution. Fortunately, common volumetric materials (fabrics, finished wood, synthesized solid textures) are structured, with repeated patterns approximated by tiling a small number of exemplar blocks. In this paper, we introduce a precomputation-based rendering approach for such volumetric media with repeated structures based on a modular transfer formulation. We model each exemplar block as a voxel grid and precompute voxel-to-voxel, patch-to-patch, and patch-to-voxel flux transfer matrices. At render time, when blocks are tiled to produce a high-resolution volume, we accurately compute low-order scattering, with modular flux transfer used to approximate higher-order scattering. We achieve speedups of up to 12× over path tracing on extremely complex volumes, with minimal loss of quality. In addition, we demonstrate that our approach outperforms photon mapping on these materials.

[1]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[2]  R. A. Leibler,et al.  Matrix inversion by a Monte Carlo method , 1950 .

[3]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[4]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[5]  Qunsheng Peng,et al.  Accelerated radiosity method for complex environments , 1990, Comput. Graph..

[6]  Bruno Arnaldi,et al.  On the Division of Environments by Virtual Walls for Radiosity Computation , 1994 .

[7]  Alain Fournier,et al.  Light-Driven Global Illumination with a Wavelet Representation of Light Transport , 1996, Rendering Techniques.

[8]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[9]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[10]  Philippe Bekaert,et al.  Hierarchical and stochastic algorithms for radiosity , 1999 .

[11]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[12]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[13]  Stephen Lin,et al.  Photorealistic rendering of knitwear using the lumislice , 2001, SIGGRAPH.

[14]  Hans-Peter Seidel,et al.  Interactive rendering of translucent objects , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[15]  Shree K. Nayar,et al.  Shedding light on the weather , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Shree K. Nayar,et al.  Practical Rendering of Multiple Scattering Effects in Participating Media , 2004, Rendering Techniques.

[17]  Craig Donner,et al.  Light diffusion in multi-layered translucent materials , 2005, SIGGRAPH 2005.

[18]  Kenneth I. Joy,et al.  Shell maps , 2005, ACM Trans. Graph..

[19]  Stephen H. Westin,et al.  Measuring and modeling the appearance of finished wood , 2005, ACM Trans. Graph..

[20]  Steve Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, ACM Trans. Graph..

[21]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[22]  Dani Lischinski,et al.  Solid texture synthesis from 2D exemplars , 2007, ACM Trans. Graph..

[23]  Stephen Lin,et al.  Modeling and rendering of heterogeneous translucent materials using the diffusion equation , 2008, TOGS.

[24]  Steve Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, ACM Trans. Graph..

[25]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, ACM Trans. Graph..

[26]  Henrik Wann Jensen,et al.  Rendering translucent materials using photon diffusion , 2008, SIGGRAPH '08.

[27]  Raanan Fattal,et al.  Participating media illumination using light propagation maps , 2009, ACM Trans. Graph..

[28]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[29]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[30]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[31]  Adam Arbree,et al.  Heterogeneous Subsurface Scattering Using the Finite Element Method , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Kenny Mitchell,et al.  Modular Radiance Transfer , 2011, ACM Trans. Graph..

[33]  Reinhard Klein,et al.  A Volumetric Approach to Predictive Rendering of Fabrics , 2011, EGSR '11.

[34]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[35]  Steve Marschner,et al.  Structure-aware synthesis for predictive woven fabric appearance , 2012, ACM Trans. Graph..

[36]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..