Group contribution lattice fluid equation of state for CO2–ionic liquid systems: An experimental and modeling study

The group contribution lattice fluid equation of state (GCLF EOS) was first extended to predict the thermodynamic properties for carbon dioxide (CO2)–ionic liquid (IL) systems. The group interaction parameters of CO2 with IL groups were obtained by means of correlating the exhaustively collected experimental solubility data at high temperatures (above 278.15 K). New group parameters between CO2 and IL groups were added into the current parameter matrix. It was verified that GCLF EOS with two kinds of mixing rules could be used for predicting the CO2 solubility in ILs, and volume expansivity of ILs upon the addition of CO2, as well as identifying the new structure–property relation. Moreover, it is the first work on the measurement of the solubility of CO2 in ILs at low temperatures (below 278.15 K), manifesting the applicability of predictive GCLF EOS over a wider temperature range. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4399–4412, 2013

[1]  M. S. High,et al.  A group contribution equation of state for polymer solutions , 1989 .

[2]  M. S. High,et al.  Application of the group contribution lattice‐fluid EOS to polymer solutions , 1990 .

[3]  R. Danner,et al.  Application of the group-contribution lattice-fluid equation of state to random copolymer-solvent systems , 1996 .

[4]  R. Danner,et al.  Prediction of polymer‐solvent phase equilibria by a modified group‐contribution EOS , 1996 .

[5]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[6]  J. Arons,et al.  Volume expansion in relation to the gas–antisolvent process , 2000 .

[7]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[8]  J. Brennecke,et al.  Ionic liquids: Innovative fluids for chemical processing , 2001 .

[9]  Joan F. Brennecke,et al.  Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[10]  R. Danner,et al.  Applications of the group-contribution, lattice-fluid equation of state , 2002 .

[11]  R. Danner,et al.  Prediction of carbon dioxide solubility in polymers based on a group-contribution equation of state , 2003 .

[12]  Andreas Klamt,et al.  Prediction of Infinite Dilution Activity Coefficients of Organic Compounds in Ionic Liquids Using COSMO-RS† , 2003 .

[13]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquid [bmim][PF6] , 2003 .

[14]  M. Gomes,et al.  Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure , 2003 .

[15]  Cor J. Peters,et al.  High-pressure phase behavior of systems with ionic liquids: II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate , 2004 .

[16]  Sheng Dai,et al.  Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance , 2004 .

[17]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[18]  A. Shariati,et al.  High-pressure phase behavior of systems with ionic liquids , 2004 .

[19]  R. Sheldon,et al.  High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafluoroborate , 2005 .

[20]  Xiangping Zhang,et al.  Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures , 2005 .

[21]  G. Maurer,et al.  Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. , 2005, The journal of physical chemistry. B.

[22]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[23]  Ryo Kato,et al.  Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water , 2005 .

[24]  Collin R. Becker,et al.  Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory , 2005 .

[25]  A. Shariati,et al.  Comparison of the Phase Behavior of Some Selected Binary Systems with Ionic Liquids , 2005 .

[26]  K. Yoo,et al.  Solubility measurement and prediction of carbon dioxide in ionic liquids , 2005 .

[27]  A. Yokozeki,et al.  Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4] , 2005 .

[28]  Byung-chul Lee,et al.  Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide , 2006 .

[29]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6] , 2006 .

[30]  Edward J Maginn,et al.  Measurement of SO2 solubility in ionic liquids. , 2006, The journal of physical chemistry. B.

[31]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[32]  M. Gomes,et al.  Effect of Acetonitrile on the Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide , 2006 .

[33]  Mark B. Shiflett,et al.  Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids , 2006 .

[34]  Xiangping Zhang,et al.  Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids , 2006 .

[35]  Jason E. Bara,et al.  Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids , 2006 .

[36]  G. Maurer,et al.  Solubility of CO2 in the ionic liquid [hmim][Tf2N] , 2006 .

[37]  A. Shariati,et al.  High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafluoroborate + carbon dioxide , 2006 .

[38]  M. Gomes,et al.  Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric , 2006 .

[39]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[40]  J. Jacquemin,et al.  Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion , 2007 .

[41]  R. Baltus,et al.  Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method , 2007 .

[42]  C. Peters,et al.  Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2007 .

[43]  E. Karakatsani,et al.  tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids , 2007 .

[44]  Biaohua Chen,et al.  Extension of the group-contribution lattice-fluid equation of state , 2007 .

[45]  J. Kang,et al.  Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions , 2007 .

[46]  J. Brennecke,et al.  Characterization of the ability of CO2 to act as an antisolvent for ionic liquid/organic mixtures. , 2007, The journal of physical chemistry. B.

[47]  L. Vega,et al.  Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model , 2007 .

[48]  J. Brennecke,et al.  Improving carbon dioxide solubility in ionic liquids. , 2007, The journal of physical chemistry. B.

[49]  M. Shiflett,et al.  Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. , 2007, The journal of physical chemistry. B.

[50]  Zhigang Lei,et al.  COSMO-RS modeling on the extraction of stimulant drugs from urine sample by the double actions of supercritical carbon dioxide and ionic liquid , 2007 .

[51]  M. Gomes Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K , 2007 .

[52]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[53]  M. Gomes,et al.  Solubility of carbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imide anion , 2007 .

[54]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[55]  J. Andreu,et al.  Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. , 2008, The journal of physical chemistry. B.

[56]  Thomas Foo,et al.  Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[57]  Meng-Hui Li,et al.  Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate , 2008 .

[58]  Meng-Hui Li,et al.  Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Tetrafluoroborate , 2008 .

[59]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension , 2008 .

[60]  Byung-chul Lee,et al.  High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2008 .

[61]  M. J. Cocero,et al.  Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: influence of water on the phase behavior. , 2008, The journal of physical chemistry. B.

[62]  Hui Liu,et al.  Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. , 2008, Chemical reviews.

[63]  Byung-chul Lee,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Ionic Liquids: 1-Alkyl-3-methylimidazolium Trifluoromethanesulfonate , 2008 .

[64]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity , 2008 .

[65]  E. Voutsas,et al.  Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC , 2009 .

[66]  J. Gmehling,et al.  Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor–liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund) , 2009 .

[67]  Wei Ren High-Pressure Phase Equilibria of Ionic Liquids and Compressed Gases for Applications in Reactions and Absorption Refrigeration , 2009 .

[68]  José O. Valderrama,et al.  A simple and generalized model for predicting the density of ionic liquids , 2009 .

[69]  Meng-Hui Li,et al.  Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate , 2009 .

[70]  R. Danner,et al.  Solubility predictions for copolymer systems , 2009 .

[71]  João A. P. Coutinho,et al.  High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids , 2009 .

[72]  Sona Raeissi,et al.  Carbon Dioxide Solubility in the Homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family , 2009 .

[73]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[74]  Dinh Quan Nguyen,et al.  Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids , 2009 .

[75]  Luís M. N. B. F. Santos,et al.  Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. , 2009, The journal of physical chemistry. B.

[76]  João A. P. Coutinho,et al.  High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids , 2009 .

[77]  M. J. Cocero,et al.  Application of a group contribution equation of state for the thermodynamic modeling of the binary systems CO2–1-butyl-3-methyl imidazolium nitrate and CO2–1-hydroxy-1-propyl-3-methyl imidazolium nitrate , 2009 .

[78]  Qunsheng Li,et al.  UNIFAC Model for Ionic Liquids , 2009 .

[79]  M. Shiflett,et al.  Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures , 2009 .

[80]  J. Jacquemin,et al.  Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX , 2009 .

[81]  Meng-Hui Li,et al.  Carbon dioxide solubility in some ionic liquids at moderate pressures , 2009 .

[82]  I. Marrucho,et al.  High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids , 2010 .

[83]  Aaron M. Scurto,et al.  High-pressure phase equilibria of {carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide} ionic liquids , 2010 .

[84]  Hwayong Kim,et al.  High-pressure phase behavior of CO2 + 1-butyl-3-methylimidazolium chloride system , 2010 .

[85]  C. Peters,et al.  Scott–van Konynenburg phase diagram of carbon dioxide + alkylimidazolium-based ionic liquids , 2010 .

[86]  R. Bogel-Łukasik,et al.  Isothermal vapour-liquid equilibria in the binary and ternary systems consisting of an ionic liquid, 1-propanol and CO2 , 2010 .

[87]  Jean-Noël Jaubert,et al.  High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. , 2010, The journal of physical chemistry. B.

[88]  Byung-chul Lee,et al.  Measurement of CO 2 Solubility in Ionic Liquids: [BMP][TfO] and [P14,6,6,6][Tf 2 N] by Measuring Bubble-Point Pressure , 2010 .

[89]  Ji-qin Zhu,et al.  Solubility of CO2 in Acetone, 1-Butyl-3-methylimidazolium Tetrafluoroborate, and Their Mixtures , 2010 .

[90]  E. Voutsas,et al.  Corrigendum to “Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC” [Fluid Phase Equilib. 284 (2009) 99–105] , 2010 .

[91]  Xiaoyan Ji,et al.  Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory , 2010 .

[92]  G. Maurer,et al.  Solubility of the Single Gases Carbon Dioxide and Hydrogen in the Ionic Liquid (bmpy)(Tf2N) , 2010 .

[93]  A. Mehdizadeh,et al.  Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate , 2010 .

[94]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[95]  A. Klamt,et al.  COSMO-RS as a tool for property prediction of IL mixtures—A review , 2010 .

[96]  J. Gmehling,et al.  Prediction of phase equilibria and excess properties for systems with ionic liquids using modified U , 2011 .

[97]  U. Domańska,et al.  Solubility of aliphatic hydrocarbons in piperidinium ionic liquids: measurements and modeling in terms of perturbed-chain statistical associating fluid theory and nonrandom hydrogen-bonding theory. , 2011, The journal of physical chemistry. B.

[98]  Jeong Won Kang,et al.  Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids , 2011 .

[99]  T. Letcher,et al.  Liquid-liquid phase equilibrium of (piperidinium-based ionic liquid + an alcohol) binary systems and modelling with NRHB and PCP-SAFT , 2011 .

[100]  Lourdes F. Vega,et al.  20 Years of the SAFT equation of state—Recent advances and challenges: Symposium held in Bellaterra, Barcelona, 19–21 September 2010 , 2011 .

[101]  Yu-feng Hu,et al.  The molecular characteristics dominating the solubility of gases in ionic liquids. , 2011, Chemical Society reviews.

[102]  Byung-chul Lee,et al.  High-pressure phase behavior of binary mixtures containing ionic liquid [HMP][Tf2N], [OMP][Tf2N] and carbon dioxide , 2011 .

[103]  K. Yoo,et al.  Measurement of CO2 Solubility in Ionic Liquids: [BMP][Tf2N] and [BMP][MeSO4] by Measuring Bubble-Point Pressure , 2011 .

[104]  C. Ghotbi,et al.  Thermodynamic modeling of hydrogen sulfide solubility in ionic liquids using modified SAFT-VR and PC , 2011 .

[105]  Pankaj Sharma,et al.  Selective chemical separation of carbondioxide by ether functionalized imidazolium cation based ionic liquids , 2012 .

[106]  Weize Wu,et al.  Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures , 2012 .

[107]  Xiaoyan Ji,et al.  Prediction of molar volume and partial molar volume for CO2/ionic liquid systems with heterosegmented statistical associating fluid theory , 2012 .

[108]  E. Macedo,et al.  High-pressure solubilities of carbon dioxide in ionic liquids based on bis(trifluoromethylsulfonyl)imide and chloride , 2012 .

[109]  G. Sadowski,et al.  Modeling imidazolium-based ionic liquids with ePC-SAFT , 2012 .

[110]  Sona Raeissi,et al.  Modeling gas solubility in ionic liquids with the SAFT-γ group contribution method , 2012 .

[111]  Li Xiao,et al.  Group contribution lattice fluid equation of state (GCLF EOS) for ionic liquids , 2012 .

[112]  A. Mehdizadeh,et al.  Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide. , 2012, The journal of physical chemistry. B.