The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer

We present the results of a series of calculations studying the collapse of molecular cloud cores performed using a three-dimensional smoothed particle hydrodynamics code with radiative transfer in the flux-limited diffusion approximation. The opacities and specific heat capacities are identical for each calculation. However, we find that the temperature evolution during the simulations varies significantly when starting from different initial conditions. Even spherically symmetric clouds with different initial densities show markedly different development. We conclude that simple barotropic equations of state like those used in some previous calculations provide at best a crude approximation to the thermal behaviour of the gas. Radiative transfer is necessary to obtain accurate temperatures.

[1]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[2]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[3]  Andreas Burkert,et al.  Fragmentation of Molecular Clouds: The Initial Phase of a Stellar Cluster , 1998 .

[4]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[5]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[6]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[7]  Shu-ichiro Inutsuka,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar , 2000 .

[8]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[9]  H. Martel,et al.  Fragmentation of Elongated Cylindrical Clouds. III. Formation of Binary and Multiple Systems , 1991 .

[10]  Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-dimensional Calculations , 1998, astro-ph/9810397.

[11]  J. M. Stone,et al.  A Module for Radiation Hydrodynamic Calculations with ZEUS-2D Using Flux-limited Diffusion , 2001, astro-ph/0102145.

[12]  L. Brookshaw The Roche Problem for Stratified Polytropes , 1986, Publications of the Astronomical Society of Australia.

[13]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[14]  P. Bodenheimer,et al.  Fragmentation in a rotating protostar - A comparison of two three-dimensional computer codes , 1979 .

[15]  Matthew R. Bate,et al.  Smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation , 2004 .

[16]  J. Pollack,et al.  A calculation of the Rosseland mean opacity of dust grains in primordial solar system nebulae , 1985 .

[17]  J. Robert Buchler,et al.  The Numerical Modelling of Nonlinear Stellar Pulsations , 1990 .

[18]  K.-H. A. Winkler,et al.  Formation of solar-type stars in spherical symmetry. II. Effects of detailed constitutive relations , 1980 .

[19]  A. Boss,et al.  Protostellar Hydrodynamics: Constructing and Testing a Spatially and Temporally Second-Order--accurate Method. I. Spherical Coordinates , 1992 .

[20]  L. Brookshaw,et al.  A Method of Calculating Radiative Heat Diffusion in Particle Simulations , 1985, Publications of the Astronomical Society of Australia.

[21]  M. Woolfson,et al.  Smoothed particle hydrodynamics with radiation transfer , 2003 .

[22]  D. Lynden-Bell,et al.  The minimum Jeans mass or when fragmentation must stop. , 1976 .

[23]  P. Bodenheimer,et al.  DYNAMIC COLLAPSE OF THE ISOTHERMAL SPHERE. , 1968 .

[24]  A. Boss Protostellar formation in rotating interstellar clouds. IV: Nonisothermal collapse , 1984 .

[25]  Richard P. Nelson,et al.  Three-dimensional hydrodynamic simulations of collapsing prolate clouds , 1993 .

[26]  D. Alexander Low-Temperature Rosseland Opacity Tables , 1975 .

[27]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[28]  R. Klein,et al.  The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries? , 2000 .

[29]  J. Monaghan,et al.  The collapse of a rotating non-axisymmetric isothermal cloud , 1981 .

[30]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[31]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[32]  P. Bodenheimer,et al.  Multiple fragmentation in collapsing protostars , 1993 .

[33]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[34]  D. C. Black,et al.  Evolution of rotating interstellar clouds. I - Numerical techniques , 1975 .

[35]  Matthew R. Bate,et al.  A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux‐limited diffusion approximation , 2005 .

[36]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .