Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions

[1]  R. Stocker,et al.  Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Chemotactic to Aromatic Compounds , 2018, bioRxiv.

[2]  R. Stocker,et al.  A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities , 2017, Nature Microbiology.

[3]  Paul A. Wiggins,et al.  SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells , 2016, Molecular Microbiology.

[4]  Victor Sourjik,et al.  Engineering Hybrid Chemotaxis Receptors in Bacteria. , 2016, ACS synthetic biology.

[5]  Ellen M. Quardokus,et al.  MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis , 2016, Nature Microbiology.

[6]  J. Wade,et al.  Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network , 2014, PLoS genetics.

[7]  J. Andrade,et al.  Statistical comparison of the slopes of two regression lines: A tutorial. , 2014, Analytica chimica acta.

[8]  Lukasz M. Solanko,et al.  Photobleaching Kinetics and Time-Integrated Emission of Fluorescent Probes in Cellular Membranes , 2014, Molecules.

[9]  Shantanu Roy,et al.  Escherchia coli ribose binding protein based bioreporters revisited , 2014, Scientific Reports.

[10]  Hiroto Takahashi,et al.  Direct Imaging of Intracellular Signaling Components That Regulate Bacterial Chemotaxis , 2014, Science Signaling.

[11]  Hau B. Nguyen,et al.  A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association , 2013, Scientific Reports.

[12]  Peter Willett,et al.  What is a tutorial , 2013 .

[13]  Vassily Hatzimanikatis,et al.  Tunable reporter signal production in feedback-uncoupled arsenic bioreporters , 2013, Microbial biotechnology.

[14]  Robert E Campbell,et al.  Dimerization-dependent green and yellow fluorescent proteins. , 2012, ACS synthetic biology.

[15]  G. L. Hazelbauer Bacterial chemotaxis: the early years of molecular studies. , 2012, Annual review of microbiology.

[16]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[17]  Robert E Campbell,et al.  A fluorogenic red fluorescent protein heterodimer. , 2012, Chemistry & biology.

[18]  Melanie B. Berkmen,et al.  Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy , 2012, Applied and Environmental Microbiology.

[19]  M. Yuzaki,et al.  NMDA Receptor-Mediated PIP5K Activation to Produce PI(4,5)P2 Is Essential for AMPA Receptor Endocytosis during LTD , 2012, Neuron.

[20]  V. de Lorenzo,et al.  Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. , 2011, Environmental microbiology.

[21]  George Sachs,et al.  Molecular aspects of bacterial pH sensing and homeostasis , 2011, Nature Reviews Microbiology.

[22]  Judith P. Armitage,et al.  Signal processing in complex chemotaxis pathways , 2011, Nature Reviews Microbiology.

[23]  Roman Stocker,et al.  Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. , 2010, Nano letters.

[24]  S. Belkin,et al.  Where microbiology meets microengineering: design and applications of reporter bacteria , 2010, Nature Reviews Microbiology.

[25]  Yusuke V. Morimoto,et al.  Proton‐conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella , 2010, FEBS letters.

[26]  K. Ottemann,et al.  The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses , 2010, BMC Research Notes.

[27]  Nikita Vladimirov,et al.  Chemotaxis: how bacteria use memory , 2009, Biological chemistry.

[28]  Arul Jayaraman,et al.  Flow-Based Microfluidic Device for Quantifying Bacterial Chemotaxis in Stable, Competing Gradients , 2009, Applied and Environmental Microbiology.

[29]  Tao Long,et al.  Bacterial chemotaxis transverse to axial flow in a microfluidic channel , 2008, Biotechnology and bioengineering.

[30]  T. Kerppola,et al.  Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. , 2008, Annual review of biophysics.

[31]  H. Berg,et al.  Resurrection of the flagellar rotary motor near zero load , 2008, Proceedings of the National Academy of Sciences.

[32]  Joan L. Slonczewski,et al.  pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry , 2007, Journal of bacteriology.

[33]  F. Avilés,et al.  Detection of transient protein–protein interactions by bimolecular fluorescence complementation: The Abl‐SH3 case , 2007, Proteomics.

[34]  T. Kerppola,et al.  Visualization of molecular interactions by fluorescence complementation , 2006, Nature Reviews Molecular Cell Biology.

[35]  J. Armitage,et al.  The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Karen Lipkow,et al.  Changing Cellular Location of CheZ Predicted by Molecular Simulations , 2006, PLoS Comput. Biol..

[37]  Jinyoung Jeong,et al.  Monitoring of conformational change in maltose binding protein using split green fluorescent protein. , 2006, Biochemical and biophysical research communications.

[38]  G. Stephanopoulos,et al.  Tuning genetic control through promoter engineering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Adam P Arkin,et al.  Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles , 2005, Physical biology.

[40]  M. Rebecchi,et al.  Phospholipase Cβ2 Binds to and Inhibits Phospholipase Cδ1* , 2005, Journal of Biological Chemistry.

[41]  H. Berg,et al.  Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[43]  J. R. van der Meer,et al.  Illuminating the detection chain of bacterial bioreporters. , 2004, Environmental microbiology.

[44]  Douglas B. Evans,et al.  Mechanisms of Proinflammatory Cytokine-Induced Biphasic NF-κB Activation. , 2003 .

[45]  S. Sood Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. , 2003 .

[46]  D. Blair Flagellar movement driven by proton translocation , 2003, FEBS letters.

[47]  F. Oosawa,et al.  Effect of Intracellular pH on Rotational Speed of Bacterial Flagellar Motors , 2003, Journal of bacteriology.

[48]  J. Stock,et al.  Bacterial chemotaxis , 2003, Current Biology.

[49]  H. Berg,et al.  Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Chang‐Deng Hu,et al.  Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. , 2002, Molecular cell.

[51]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Homma,et al.  Na(+)-driven flagellar motor of Vibrio. , 2001, Biochimica et biophysica acta.

[53]  R. Daniel,et al.  Export of active green fluorescent protein to the periplasm by the twin‐arginine translocase (Tat) pathway in Escherichia coli , 2001, Molecular microbiology.

[54]  J. Leveau,et al.  Improved gfp and inaZ broad-host-range promoter-probe vectors. , 2000, Molecular plant-microbe interactions : MPMI.

[55]  H. Berg,et al.  Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions , 2000, Molecular microbiology.

[56]  G. Barrett,et al.  Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. , 2000, Chemical reviews.

[57]  L. Regan,et al.  Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein , 2000 .

[58]  H. Berg,et al.  Constraints on models for the flagellar rotary motor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[60]  L. Poulsen,et al.  New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria , 1998, Applied and Environmental Microbiology.

[61]  I. Kawagishi,et al.  Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. , 1995, Biophysical journal.

[62]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[63]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[64]  M. Surette,et al.  Signal transduction in bacterial chemotaxis , 1992, The Journal of biological chemistry.

[65]  R. Parales,et al.  Chemotaxis to Atypical Chemoattractants by Soil Bacteria. , 2018, Methods in molecular biology.

[66]  C. Mazza,et al.  Delft University of Technology Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips , 2018 .

[67]  J. S. Parkinson,et al.  Bacterial chemoreceptors: high-performance signaling in networked arrays. , 2008, Trends in biochemical sciences.

[68]  Paul J. Choi,et al.  Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. , 2008, Annual review of biophysics.

[69]  N. Pei Application of Green Fluorescent Protein , 2001 .

[70]  P. Gerhardt Manual of methods for general bacteriology. , 1981 .

[71]  Brown Da,et al.  Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. , 1974 .

[72]  J. Adler A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. , 1973, Journal of general microbiology.