A missense variant in IFT122 associated with a canine model of retinitis pigmentosa

[1]  C. Mellersh,et al.  A LINE-1 insertion situated in the promoter of IMPG2 is associated with autosomal recessive progressive retinal atrophy in Lhasa Apso dogs , 2020, BMC Genetics.

[2]  C. Mellersh,et al.  Deletion in the Bardet–Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs , 2020, Genes.

[3]  Ryan M. Layer,et al.  webGQT: A Shiny Server for Genotype Query Tools for Model-Based Variant Filtering , 2020, Frontiers in Genetics.

[4]  J. Kere,et al.  Differentiation of ciliated human midbrain-derived LUHMES neurons , 2020, bioRxiv.

[5]  P. Quignon,et al.  Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds , 2019, Human Genetics.

[6]  B. J. Klevering,et al.  Non-syndromic retinitis pigmentosa , 2018, Progress in Retinal and Eye Research.

[7]  B. Ganesan,et al.  Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs , 2018, PLoS genetics.

[8]  K. Nakayama,et al.  Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis , 2018, Human molecular genetics.

[9]  Ryan E. Mills,et al.  The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology , 2017, Genome research.

[10]  C. Wade,et al.  A Coding Variant in the Gene Bardet-Biedl Syndrome 4 (BBS4) Is Associated with a Novel Form of Canine Progressive Retinal Atrophy , 2017, G3: Genes, Genomes, Genetics.

[11]  K. Nakayama,et al.  Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein–coupled receptors , 2017, Molecular biology of the cell.

[12]  Hiromi Hirata,et al.  Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport* , 2016, The Journal of Biological Chemistry.

[13]  U. Giger,et al.  Genetic Panel Screening of Nearly 100 Mutations Reveals New Insights into the Breed Distribution of Risk Variants for Canine Hereditary Disorders , 2016, PloS one.

[14]  Piero Carninci,et al.  FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki , 2016, Database J. Biol. Databases Curation.

[15]  B. Guldbrandtsen,et al.  Domesticated Animal Biobanking: Land of Opportunity , 2016, PLoS Biology.

[16]  P. Nürnberg,et al.  Novel IFT122 mutations in three Argentinian patients with cranioectodermal dysplasia: Expanding the mutational spectrum , 2016, American journal of medical genetics. Part A.

[17]  G. Holder,et al.  Nonsyndromic Retinal Dystrophy due to Bi-Allelic Mutations in the Ciliary Transport Gene IFT140. , 2016, Investigative ophthalmology & visual science.

[18]  H. Lohi,et al.  Canine models of human rare disorders , 2016, Rare diseases.

[19]  Ryan M. Layer,et al.  SpeedSeq: Ultra-fast personal genome analysis and interpretation , 2014, Nature Methods.

[20]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[21]  S. Saito,et al.  Whole exome sequencing revealed biallelic IFT122 mutations in a family with CED1 and recurrent pregnancy loss , 2014, Clinical genetics.

[22]  C. Mellersh,et al.  A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever , 2014, Canine Genetics and Epidemiology.

[23]  C. Mellersh,et al.  An Intronic SINE Insertion in FAM161A that Causes Exon-Skipping Is Associated with Progressive Retinal Atrophy in Tibetan Spaniels and Tibetan Terriers , 2014, PloS one.

[24]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[25]  F. Alkuraya,et al.  Novel IFT122 mutation associated with impaired ciliogenesis and cranioectodermal dysplasia , 2013, Molecular genetics & genomic medicine.

[26]  Shintaro Katayama,et al.  SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization , 2013, Bioinform..

[27]  S. Daiger,et al.  Genes and mutations causing retinitis pigmentosa , 2013, Clinical genetics.

[28]  J. Majewski,et al.  WDR19: An ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior‐Loken syndrome , 2013, Clinical genetics.

[29]  V. Beneš,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[30]  G. Acland,et al.  Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies , 2012, Mammalian Genome.

[31]  K. Lindblad-Toh,et al.  LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. , 2011, Veterinary journal.

[32]  S. Ferrari,et al.  Retinitis Pigmentosa: Genes and Disease Mechanisms , 2011, Current genomics.

[33]  G. Aguirre,et al.  Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3) , 2010, Molecular vision.

[34]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[35]  J. Epplen,et al.  Progressive retinal atrophy in Schapendoes dogs: mutation of the newly identified CCDC66 gene , 2010, neurogenetics.

[36]  Maido Remm,et al.  Enhancements and modifications of primer design program Primer3 , 2007, Bioinform..

[37]  G. Acland,et al.  Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. , 2006, Genomics.

[38]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[39]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[40]  G. Woodruff,et al.  A new oculorenal syndrome: retinal dystrophy and tubulointerstitial nephropathy in cranioectodermal dysplasia. , 1996, The British journal of ophthalmology.

[41]  R. W. Young Visual cells and the concept of renewal. , 1976, Investigative ophthalmology & visual science.

[42]  L. Black Progressive retinal atrophy , 1972 .

[43]  E. Robertis Morphogenesis of the retinal rods; an electron microscope study. , 1956 .

[44]  H. Parry Degenerations of the Dog Retina * , 1953, The British journal of ophthalmology.

[45]  C. Mellersh,et al.  Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs , 2020 .

[46]  R. Hennekam,et al.  Cranioectodermal Dysplasia, Sensenbrenner Syndrome, Is a Ciliopathy Caused by Mutations in the IFT122 Gene , 2022 .

[47]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[48]  L. Messiaen,et al.  Cloning and characterization of human WDR10, a novel gene located at 3q21 encoding a WD-repeat protein that is highly expressed in pituitary and testis. , 2001, DNA and cell biology.