Genetic algorithm-based multi-criteria project portfolio selection

Project portfolio selection is one of the most important decision-making problems for most organizations in project management and engineering management. Usually project portfolio decisions are very complicated when project interactions in terms of multiple selection criteria and preference information of decision makers (DMs) in terms of the criteria importance are taken into consideration simultaneously. In order to solve this complex decision-making problem, a multi-criteria project portfolio selection problem considering project interactions in terms of multiple selection criteria and DMs’ preferences is first formulated. Then a genetic algorithm (GA)-based nonlinear integer programming (NIP) approach is used to solve the multi-criteria project portfolio selection problem. Finally, two illustrative examples are presented for demonstration and verification purposes. Experimental results obtained indicate that the GA-based NIP approach can be used as a feasible and effective solution to multi-criteria project portfolio selection problems.

[1]  D. N. Kleinmuntz Advances in Decision Analysis: Resource Allocation Decisions , 2007 .

[2]  Pekka Korhonen,et al.  Multiple criteria decision support - A review , 1992 .

[3]  Susan W. Palocsay,et al.  An Excel-Based Decision Support System for Scoring and Ranking Proposed R&D Projects , 2008, Int. J. Inf. Technol. Decis. Mak..

[4]  C E Kleinmuntz,et al.  A strategic approach to allocating capital in healthcare organizations. , 1999, Healthcare financial management : journal of the Healthcare Financial Management Association.

[5]  R. Cooper,et al.  New Product Portfolio Management : Practices and Performance , 1999 .

[6]  Christian N. Madu,et al.  A strategic decision model for the selection of advanced technology , 1994 .

[7]  Ahti Salo,et al.  Preference programming for robust portfolio modeling and project selection , 2007, Eur. J. Oper. Res..

[8]  William J. Tarantino,et al.  Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis , 2006, Decis. Anal..

[9]  Stephen C. Graves,et al.  Technology portfolio management: optimizing interdependent projects over multiple time periods , 2001, IEEE Trans. Engineering Management.

[10]  Juuso Liesiö Robust Portfolio Optimization in Multi-Criteria Project Selection , 2006 .

[11]  Zhengxin Chen,et al.  A Descriptive Framework for the Field of Data Mining and Knowledge Discovery , 2008, Int. J. Inf. Technol. Decis. Mak..

[12]  Yves Crama,et al.  Boolean methods in operations research and related areas , 2011 .

[13]  Kin Keung Lai,et al.  An integrated data preparation scheme for neural network data analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[14]  Norman R. Baker,et al.  Economic Models for R and D Project Selection in the Presence of Project Interactions , 1984 .

[15]  D. A. Aaker,et al.  A model for the selection of interdependent R&D projects , 1978, IEEE Transactions on Engineering Management.

[16]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[17]  T. Stewart A CRITICAL SURVEY ON THE STATUS OF MULTIPLE CRITERIA DECISION MAKING THEORY AND PRACTICE , 1992 .

[18]  Detlof von Winterfeldt,et al.  Advances in decision analysis : from foundations to applications , 2007 .

[19]  Christian Stummer,et al.  Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives , 2003, IEEE Trans. Engineering Management.

[20]  Rahib Hidayat Abiyev,et al.  Fuzzy portfolio selection using genetic algorithm , 2007, Soft Comput..

[21]  Elmar Kiesling,et al.  A multicriteria Decision Support System for Competence-Driven Project Portfolio Selection , 2009, Int. J. Inf. Technol. Decis. Mak..

[22]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Andrés L. Medaglia,et al.  A multiobjective model for the selection and timing of public enterprise projects , 2008 .

[24]  Andrés L. Medaglia,et al.  A multiobjective evolutionary approach for linearly constrained project selection under uncertainty , 2007, Eur. J. Oper. Res..

[25]  Kamal Golabi,et al.  Selecting a group of dissimilar projects for funding , 1987, IEEE Transactions on Engineering Management.

[26]  Radhika Santhanam,et al.  A multiple criteria decision model for information system project selection , 1995, Comput. Oper. Res..

[27]  Wallace W. Tourtellotte,et al.  Interaction , 1988 .

[28]  Michael A. Talias,et al.  Optimal decision indices for R&D project evaluation in the pharmaceutical industry: Pearson index versus Gittins index , 2007, Eur. J. Oper. Res..

[29]  Kamal Golabi,et al.  Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory , 1981 .

[30]  Robert L. Schmidt,et al.  An improved discrete dynamic programming algorithm for allocating resources among interdependent projects , 1991 .

[31]  Christer Carlsson,et al.  Multiple criteria decision making: The case for interdependence , 1995, Comput. Oper. Res..

[32]  George Mavrotas,et al.  Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming , 2006, Eur. J. Oper. Res..

[33]  Zhengxin Chen,et al.  A Multi-criteria Convex Quadratic Programming model for credit data analysis , 2008, Decis. Support Syst..

[34]  Thierry Marchant,et al.  Evaluation and Decision Models with Multiple Criteria: Stepping Stones for the Analyst , 2006 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  Ralf Östermark,et al.  Temporal interdependence in fuzzy MCDM problems , 1997, Fuzzy Sets Syst..