Virtual High Performance Machining

Abstract The goal of current research is to develop digital models of all steps in the manufacturing of parts. This paper presents an overview of digital machining of parts in virtual environment. It is based on research and development of digital models in machining parts. The tool – part intersection along the tool path is evaluated at discrete steps, which are then used to calculate chip area, cutting load, torque-power-energy drawn from the machine and the detection of chatter occurrence. The dynamics of the CNC system are incorporated to the digital model in order to estimate the true tangential feed and machining cycle time. The tangential feeds are automatically optimized by considering the tool breakage, spindle torque-power, and tool deflection limits set by the process planner. The virtual machining system can be used independently or as an integral part of CAM systems such as Siemens NX. Sample applications of the virtual high performance machining system in aerospace industry are presented.