LiSr3Be3B3O9F4: a new ultraviolet nonlinear optical crystal for fourth-harmonic generation of Nd:YAG lasers

A new ultraviolet nonlinear optical crystal, LiSr3Be3B3O9F4 (LSBBF), was obtained by the flux method. LSBBF is isostructural to NaSr3Be3B3O9F4 and inherits its brilliant [Be3B3O12F]10− structural units. It exhibits a considerable second-harmonic generation (SHG) intensity (∼2.2 × KDP) and short ultraviolet cut-off wavelength (∼175 nm). Further theoretical calculations revealed that the shortest SHG phase-matching wavelength of LSBBF is down to ∼245 nm. These results indicated that LSBBF has potential to be used for the 266 nm output of the fourth harmonic of Nd:YAG lasers.

[1]  Zheshuai Lin,et al.  BaBe2BO3F3: A KBBF-Type Deep-Ultraviolet Nonlinear Optical Material with Reinforced [Be2BO3F2]∞ Layers and Short Phase-Matching Wavelength , 2016 .

[2]  Lei Yang,et al.  266  nm ultraviolet light generation in Ga-doped BaAlBO3F2 crystals. , 2016, Optics letters.

[3]  Zheshuai Lin,et al.  First-Principles Evaluation of the Alkali and/or Alkaline Earth Beryllium Borates in Deep Ultraviolet Nonlinear Optical Applications , 2015 .

[4]  K. Poeppelmeier,et al.  Pb2Ba3(BO3)3Cl: A Material with Large SHG Enhancement Activated by Pb-Chelated BO3 Groups. , 2015, Journal of the American Chemical Society.

[5]  F. Zhang,et al.  167.75-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO4 amplifier in KBBF. , 2015, Optics letters.

[6]  T. Taira,et al.  > 1 MW peak power at 266 nm in nonlinear YAl3(BO3)4 (YAB) single crystal , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[7]  Guiling Wang,et al.  High-average-power 266 nm generation with a KBe₂BO₃F₂ prism-coupled device. , 2014, Optics express.

[8]  Zheshuai Lin,et al.  Analysis of Deep‐UV Nonlinear Optical Borates: Approaching the End , 2014 .

[9]  K. Poeppelmeier,et al.  Cs3Zn6B9O21: a chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. , 2014, Journal of the American Chemical Society.

[10]  Yihe Zhang,et al.  Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33. , 2013, Journal of the American Chemical Society.

[11]  J. Qin,et al.  Bandgaps in the deep ultraviolet borate crystals: Prediction and improvement , 2013 .

[12]  Jinqiu Yu,et al.  Crystal growth and optical properties of YAl3(BO3)4 for UV applications , 2012 .

[13]  Zheshuai Lin,et al.  Molecular Engineering Design to Resolve the Layering Habit and Polymorphism Problems in Deep UV NLO Crystals: New Structures in MM′Be2B2O6F (M: Na, M′: Ca; M: K, M′: Ca, Sr). , 2011 .

[14]  Zheshuai Lin,et al.  NaSr3Be3B3O9F4: a promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F](10-) anionic group. , 2011, Angewandte Chemie.

[15]  Zhanggui Hu,et al.  Growth and characterization of Ba(Al,Ga)BO3F2 crystal , 2011 .

[16]  Dao-Yi Yu,et al.  Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment. , 2011, Applied optics.

[17]  Kyung-Jin Choi,et al.  Analysis of silicon via hole drilling for wafer level chip stacking by UV laser , 2010 .

[18]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[19]  C. T. Chen,et al.  Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications , 2009 .

[20]  Qiang Liu,et al.  High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz , 2009 .

[21]  Chuangtian Chen,et al.  Effect of dislocations on the optical homogeneity and UV absorption of KABO crystals , 2006 .

[22]  T. Yue,et al.  Rapid prototyping of polymer-based MEMS devices using UV YAG laser , 2004 .

[23]  Thomas Seeger,et al.  Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering. , 2004, Applied optics.

[24]  Masashi Yoshimura,et al.  Improvement of laser-induced damage tolerance in CsLiB6O10 for high-power UV laser source , 2003, CLEO 2003.

[25]  Henry Yu,et al.  Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion , 2000, LASE.

[26]  Bai-chang Wu,et al.  New nonlinear optical crystal K 2 Al 2 B 2 O 7 , 1999 .

[27]  Younan Xia,et al.  New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach , 1995 .

[28]  Sadao Nakai,et al.  Nonlinear Optical Properties of Cesium Lithium Borate , 1995 .

[29]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[30]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[31]  S. Kurtz,et al.  ALPHA‐IODIC ACID: A SOLUTION‐GROWN CRYSTAL FOR NONLINEAR OPTICAL STUDIES AND APPLICATIONS , 1968 .

[32]  L. Bai,et al.  Growth and optical properties of the novel nonlinear optical crystal NaSr3Be3B3O9F4 , 2015 .

[33]  Bo Tan,et al.  Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses , 2005 .

[34]  Zheshuai Lin,et al.  The development of new borate-based UV nonlinear optical crystals , 2005 .

[35]  Chuangtian Chen,et al.  The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series , 1989 .

[36]  Universities of Leeds, Sheffield and York , 2022 .