Lattice-based kernel approximation and serendipitous weights for parametric PDEs in very high dimensions
暂无分享,去创建一个
[1] I. Sloan,et al. Uncertainty quantification for random domains using periodic random variables , 2022, arXiv.org.
[2] F. Kuo,et al. Constructing Embedded Lattice-based Algorithms for Multivariate Function Approximation with a Composite Number of Points , 2022, ArXiv.
[3] D. Potts,et al. On the reconstruction of functions from values at subsampled quadrature points , 2022, Math. Comput..
[4] Philipp A. Guth,et al. Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration , 2022, Numerische Mathematik.
[5] Mario Ullrich,et al. A sharp upper bound for sampling numbers in L2 , 2022, SSRN Electronic Journal.
[6] Frances Y. Kuo,et al. A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty , 2021, SIAM/ASA J. Uncertain. Quantification.
[7] Lukas Herrmann,et al. Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems , 2021, Math. Comput..
[8] Robert Scheichl,et al. Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: Efficient algorithms and numerical results , 2021, IMA Journal of Numerical Analysis.
[9] Robert Scheichl,et al. Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: Regularity and error analysis , 2020, IMA Journal of Numerical Analysis.
[10] M. Schäfer,et al. A New Upper Bound for Sampling Numbers , 2020, Foundations of Computational Mathematics.
[11] Frances Y. Kuo,et al. Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification , 2020, Numerische Mathematik.
[12] Frances Y. Kuo,et al. Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights , 2019, Math. Comput..
[13] Frances Y. Kuo,et al. Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters , 2019, 75 Years of Mathematics of Computation.
[14] I. Sloan,et al. Uncertainty Quantification Using Periodic Random Variables , 2019, SIAM J. Numer. Anal..
[15] Josef Dick,et al. Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion , 2019, Comput. Math. Appl..
[16] Frances Y. Kuo,et al. Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients , 2018, Numerische Mathematik.
[17] Michael Peters,et al. Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.
[18] Lutz Kämmerer,et al. Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices , 2018, J. Approx. Theory.
[19] Christoph Schwab,et al. Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..
[20] Helmut Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[21] Frances Y. Kuo,et al. Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial , 2016, 1710.10984.
[22] Frances Y. Kuo,et al. Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.
[23] Lutz Kämmerer,et al. Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.
[24] Lutz Kämmerer,et al. Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling , 2015, J. Complex..
[25] Albert Cohen,et al. Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.
[26] Frances Y. Kuo,et al. Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.
[27] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[28] F. J. Hickernell,et al. Spline Methods Using Integration Lattices and Digital Nets , 2009 .
[29] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[30] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[31] Mario Ullrich,et al. Function Values Are Enough for L 2 -Approximation , 2020 .
[32] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[33] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .