Lattice-based kernel approximation and serendipitous weights for parametric PDEs in very high dimensions

We describe a fast method for solving elliptic partial differential equations (PDEs) with uncertain coefficients using kernel interpolation at a lattice point set. By representing the input random field of the system using the model proposed by Kaarnioja, Kuo, and Sloan (SIAM J.~Numer.~Anal.~2020), in which a countable number of independent random variables enter the random field as periodic functions, it was shown by Kaarnioja, Kazashi, Kuo, Nobile, and Sloan (Numer.~Math.~2022) that the lattice-based kernel interpolant can be constructed for the PDE solution as a function of the stochastic variables in a highly efficient manner using fast Fourier transform (FFT). In this work, we discuss the connection between our model and the popular ``affine and uniform model'' studied widely in the literature of uncertainty quantification for PDEs with uncertain coefficients. We also propose a new class of weights entering the construction of the kernel interpolant -- \emph{serendipitous weights} -- which dramatically improve the computational performance of the kernel interpolant for PDE problems with uncertain coefficients, and allow us to tackle function approximation problems up to very high dimensionalities. Numerical experiments are presented to showcase the performance of the serendipitous weights.

[1]  I. Sloan,et al.  Uncertainty quantification for random domains using periodic random variables , 2022, arXiv.org.

[2]  F. Kuo,et al.  Constructing Embedded Lattice-based Algorithms for Multivariate Function Approximation with a Composite Number of Points , 2022, ArXiv.

[3]  D. Potts,et al.  On the reconstruction of functions from values at subsampled quadrature points , 2022, Math. Comput..

[4]  Philipp A. Guth,et al.  Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration , 2022, Numerische Mathematik.

[5]  Mario Ullrich,et al.  A sharp upper bound for sampling numbers in L2 , 2022, SSRN Electronic Journal.

[6]  Frances Y. Kuo,et al.  A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty , 2021, SIAM/ASA J. Uncertain. Quantification.

[7]  Lukas Herrmann,et al.  Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems , 2021, Math. Comput..

[8]  Robert Scheichl,et al.  Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: Efficient algorithms and numerical results , 2021, IMA Journal of Numerical Analysis.

[9]  Robert Scheichl,et al.  Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: Regularity and error analysis , 2020, IMA Journal of Numerical Analysis.

[10]  M. Schäfer,et al.  A New Upper Bound for Sampling Numbers , 2020, Foundations of Computational Mathematics.

[11]  Frances Y. Kuo,et al.  Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification , 2020, Numerische Mathematik.

[12]  Frances Y. Kuo,et al.  Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights , 2019, Math. Comput..

[13]  Frances Y. Kuo,et al.  Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters , 2019, 75 Years of Mathematics of Computation.

[14]  I. Sloan,et al.  Uncertainty Quantification Using Periodic Random Variables , 2019, SIAM J. Numer. Anal..

[15]  Josef Dick,et al.  Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion , 2019, Comput. Math. Appl..

[16]  Frances Y. Kuo,et al.  Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients , 2018, Numerische Mathematik.

[17]  Michael Peters,et al.  Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.

[18]  Lutz Kämmerer,et al.  Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices , 2018, J. Approx. Theory.

[19]  Christoph Schwab,et al.  Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..

[20]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[21]  Frances Y. Kuo,et al.  Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial , 2016, 1710.10984.

[22]  Frances Y. Kuo,et al.  Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.

[23]  Lutz Kämmerer,et al.  Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.

[24]  Lutz Kämmerer,et al.  Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling , 2015, J. Complex..

[25]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[26]  Frances Y. Kuo,et al.  Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.

[27]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[28]  F. J. Hickernell,et al.  Spline Methods Using Integration Lattices and Digital Nets , 2009 .

[29]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[30]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[31]  Mario Ullrich,et al.  Function Values Are Enough for L 2 -Approximation , 2020 .

[32]  I. Sloan,et al.  Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .

[33]  Fred J. Hickernell,et al.  Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .