Global well-posedness for the viscous primitive equations of geophysics

[1]  S. Cui,et al.  Existence and analyticity of mild solutions for the 3D rotating Navier–Stokes equations , 2017 .

[2]  Frédéric Charve Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive Equations , 2014, 1411.6859.

[3]  Sanghyuk Lee,et al.  Dispersive estimates for the Navier-Stokes equations in the rotational framework , 2014, Advances in Differential Equations.

[4]  Ryo Takada,et al.  Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type , 2014 .

[5]  Ryo Takada,et al.  Global solutions for the Navier-Stokes equations in the rotational framework , 2013 .

[6]  B. Han,et al.  Global existence results for the Navier-Stokes equations in the rotational framework , 2012, 1205.1561.

[7]  Frédéric Charve,et al.  Global existence for the primitive equations with small anisotropic viscosity , 2011 .

[8]  Abdelhafid Younsi,et al.  Global well posedness for the Navier-Stokes equations , 2011 .

[9]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[10]  T. Yoneda,et al.  On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations , 2010, 1007.1181.

[11]  Yoshihiro Shibata,et al.  The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework , 2010 .

[12]  Zhifei Zhang,et al.  Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data , 2009, 0910.3064.

[13]  Y. Giga,et al.  Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data , 2008 .

[14]  B. Desjardins,et al.  Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations , 2006 .

[15]  Frédéric Charve Global Well-Posedness and Asymptotics for a Geophysical Fluid System , 2005 .

[16]  阪本 敏浩,et al.  『Introduction to PDEs and Waves for the Atmosphere and Ocean(Courant Lecture Notes, Volume 9)』, Andrew Majda著, American Mathematical Society刊, 2003年1月発行, 234頁, ペーパーバック, $40.95, ISBN:0-8218-2954-8 , 2004 .

[17]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[18]  R. Danchin Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .

[19]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[20]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[21]  B. Nicolaenko,et al.  FAST SINGULAR OSCILLATING LIMITS AND GLOBAL REGULARITY FOR THE 3D PRIMITIVE EQUATIONS OF GEOPHYSICS , 2000 .

[22]  B. Nicolaenko,et al.  ON THE REGULARITY OF THREE-DIMENSIONAL ROTATING EULER–BOUSSINESQ EQUATIONS , 1999 .

[23]  Marco Cannone,et al.  A generalization of a theorem by Kato on Navier-Stokes equations , 1997 .

[24]  J. Chemin,et al.  À propos d'un problème de pénalisation de type antisymétrique , 1997 .

[25]  B. Nicolaenko,et al.  On the Asymptotic Regimes and the Strongly Stratified Limit of Rotating Boussinesq Equations , 1997 .

[26]  B. Cushman-Roisin Introduction to Geophysical Fluid Dynamics , 1994 .

[27]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[28]  P. Drazin,et al.  Geophysical Fluid Dynamics. By Joseph Pedlosky. Springer, 1979. 624 pp. DM 79.50. , 1981, Journal of Fluid Mechanics.

[29]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[30]  Frédéric Charve Global well-posedness for the primitive equations with less regular initial data , 2008 .

[31]  Marco Cannone,et al.  Chapter 3 - Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2005 .

[32]  Frédéric Charve Convergence of weak solutions for the primitive system of the quasigeostrophic equations , 2005 .

[33]  B. Desjardins,et al.  Anisotropy and dispersion in rotating fluids , 2002 .

[34]  H. Triebel Theory Of Function Spaces , 1983 .

[35]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[36]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .