A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics
暂无分享,去创建一个
[1] Meinhard E. Mayer,et al. Navier-Stokes Equations and Turbulence , 2008 .
[2] M. Ghil,et al. Time-Continuous Assimilation of Remote-Sounding Data and Its Effect an Weather Forecasting , 1979 .
[3] M. U. Altaf,et al. Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.
[4] James C. Robinson. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .
[5] J. Charney,et al. Use of Incomplete Historical Data to Infer the Present State of the Atmosphere , 1969 .
[6] Edriss S. Titi,et al. Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..
[7] R. Temam,et al. Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .
[8] Thierry Gallouët,et al. Nonlinear Schrödinger evolution equations , 1980 .
[9] Edriss S. Titi,et al. Determining nodes, finite difference schemes and inertial manifolds , 1991 .
[10] Donald A. Jones,et al. Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .
[11] Débora A. F. Albanez,et al. Continuous data assimilation for the three-dimensional Navier-Stokes-$\alpha$ , 2014, 1408.5470.
[12] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[13] Edriss S. Titi,et al. Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .
[14] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[15] D. Luenberger. An introduction to observers , 1971 .
[16] Gerd Baumann,et al. Navier–Stokes Equations on R3 × [0, T] , 2016 .
[17] Edriss S. Titi,et al. Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations , 2010, 1010.6105.
[18] Edriss S. Titi,et al. Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.
[19] R. Temam,et al. Asymptotic analysis of the navier-stokes equations , 1983 .
[20] James C. Robinson. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .
[21] R. Daley. Atmospheric Data Analysis , 1991 .
[22] Edriss S. Titi,et al. On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .
[23] Edriss S. Titi,et al. Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.
[24] Hakima Bessaih,et al. Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.
[25] A. Stuart,et al. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model , 2012, 1212.4923.
[26] Bernardo Cockburn,et al. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..
[27] E. Titi,et al. Determining modes and Grashof number in 2D turbulence: a numerical case study , 2008 .
[28] Edriss S. Titi,et al. Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.
[29] A. M. Stuart,et al. Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation , 2012, 1210.1594.
[30] Ciprian Foias,et al. Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence ✩ , 2010 .
[31] Edriss S. Titi,et al. Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..
[32] Peter Korn,et al. Data assimilation for the Navier–Stokes-α equations , 2009 .
[33] Michael Ghil,et al. A balanced diagnostic system compatible with a barotropic prognostic model , 1977 .
[34] N. Kryloff,et al. La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .
[35] F. Thau. Observing the state of non-linear dynamic systems† , 1973 .
[36] J. Hoke,et al. The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .
[37] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[38] Edriss S. Titi,et al. A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.
[39] Heinz-Otto Kreiss,et al. Numerical Experiments on the Interaction Between the Large- and Small-Scale Motions of the Navier-Stokes Equations , 2003, Multiscale Model. Simul..
[40] Henk Nijmeijer,et al. A dynamical control view on synchronization , 2001 .
[41] Edriss S. Titi,et al. Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.
[42] Edriss S. Titi,et al. Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.