A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics

Author(s): Foias, Ciprian; Mondaini, Cecilia F; Titi, Edriss S | Abstract: We adapt a previously introduced continuous in time data assimilation (downscaling) algorithm for the 2D Navier-Stokes equations to the more realistic case when the measurements are obtained discretely in time and may be contaminated by systematic errors. Our algorithm is designed to work with a general class of observables, such as low Fourier modes and local spatial averages over finite volume elements. Under suitable conditions on the relaxation (nudging) parameter, the spatial mesh resolution and the time step between successive measurements, we obtain an asymptotic in time estimate of the difference between the approximating solution and the unknown reference solution corresponding to the measurements, in an appropriate norm, which shows exponential convergence up to a term which depends on the size of the errors. A stationary statistical analysis of our discrete data assimilation algorithm is also provided.

[1]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[2]  M. Ghil,et al.  Time-Continuous Assimilation of Remote-Sounding Data and Its Effect an Weather Forecasting , 1979 .

[3]  M. U. Altaf,et al.  Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.

[4]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[5]  J. Charney,et al.  Use of Incomplete Historical Data to Infer the Present State of the Atmosphere , 1969 .

[6]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[7]  R. Temam,et al.  Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .

[8]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[9]  Edriss S. Titi,et al.  Determining nodes, finite difference schemes and inertial manifolds , 1991 .

[10]  Donald A. Jones,et al.  Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .

[11]  Débora A. F. Albanez,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-$\alpha$ , 2014, 1408.5470.

[12]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[13]  Edriss S. Titi,et al.  Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .

[14]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[15]  D. Luenberger An introduction to observers , 1971 .

[16]  Gerd Baumann,et al.  Navier–Stokes Equations on R3 × [0, T] , 2016 .

[17]  Edriss S. Titi,et al.  Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations , 2010, 1010.6105.

[18]  Edriss S. Titi,et al.  Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.

[19]  R. Temam,et al.  Asymptotic analysis of the navier-stokes equations , 1983 .

[20]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[21]  R. Daley Atmospheric Data Analysis , 1991 .

[22]  Edriss S. Titi,et al.  On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .

[23]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[24]  Hakima Bessaih,et al.  Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.

[25]  A. Stuart,et al.  Analysis of the 3DVAR filter for the partially observed Lorenz'63 model , 2012, 1212.4923.

[26]  Bernardo Cockburn,et al.  Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..

[27]  E. Titi,et al.  Determining modes and Grashof number in 2D turbulence: a numerical case study , 2008 .

[28]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[29]  A. M. Stuart,et al.  Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation , 2012, 1210.1594.

[30]  Ciprian Foias,et al.  Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence ✩ , 2010 .

[31]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[32]  Peter Korn,et al.  Data assimilation for the Navier–Stokes-α equations , 2009 .

[33]  Michael Ghil,et al.  A balanced diagnostic system compatible with a barotropic prognostic model , 1977 .

[34]  N. Kryloff,et al.  La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .

[35]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[36]  J. Hoke,et al.  The Initialization of Numerical Models by a Dynamic-Initialization Technique , 1976 .

[37]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[38]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[39]  Heinz-Otto Kreiss,et al.  Numerical Experiments on the Interaction Between the Large- and Small-Scale Motions of the Navier-Stokes Equations , 2003, Multiscale Model. Simul..

[40]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[41]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[42]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.