On theoretical and numerical aspects of symplectic Gram–Schmidt-like algorithms

Abstract Gram–Schmidt-like orthogonalization process with respect to a given skew-symmetric scalar product is a key step in model reduction methods, structure-preserving, for large sparse Hamiltonian eigenvalue problem. Theoretical as well as numerical aspects of this step do not benefit of enough attention, compared to the one allowed to the classical Gram–Schmidt algorithm and its modified version. The aim of this paper is to revisit the symplectic Gram–Schmidt algorithms, to built some modified versions and to deal with their theoretical and numerical features.

[1]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[2]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .

[3]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[4]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[5]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[6]  J. Della-Dora Numerical linear algorithms and group theory , 1975 .

[7]  Paul Van Dooren,et al.  Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[10]  Å. Björck Numerics of Gram-Schmidt orthogonalization , 1994 .

[11]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[12]  V. Mehrmann,et al.  On Hamiltonian and symplectic Hessenberg forms , 1991 .

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  K. Meyer,et al.  Canonical forms for symplectic and Hamiltonian matrices , 1974 .

[15]  R. Byers A Hamiltonian $QR$ Algorithm , 1986 .

[16]  V. Mehrmann,et al.  Schur-Like Forms for Matrix Lie Groups , Lie Algebras andJordan AlgebrasGregory , 1999 .

[17]  A. Bunse-Gerstner Matrix factorizations for symplectic QR-like methods , 1986 .

[18]  F. Tisseur,et al.  G-Reflectors: Analogues of Householder Transformations in Scalar Product Spaces , 2004 .

[19]  V. Mehrmann,et al.  A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .

[20]  David S. Watkins,et al.  Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .

[21]  Å. Björck Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .

[22]  P. Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .

[23]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[24]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[25]  C. Brezinski Computational Aspects of Linear Control , 2002 .

[26]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[27]  A. Bunse-Gerstner,et al.  A symplectic QR like algorithm for the solution of the real algebraic Riccati equation , 1986 .

[28]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .