The Remarkable Effectiveness of Time-Dependent Damping Terms for Second Order Evolution Equations

We consider a second order linear evolution equation with a dissipative term multiplied by a time-dependent coefficient. Our aim is to design the coefficient in such a way that all solutions decay in time as fast as possible. We discover that constant coefficients do not achieve the goal and neither do time-dependent coefficients, if they are uniformly too big. On the contrary, pulsating coefficients which alternate big and small values in a suitable way prove to be more effective. Our theory applies to ordinary differential equations, systems of ordinary differential equations, and partial differential equations of hyperbolic type.