Isomorph-free generation of 2-connected graphs with applications

Many interesting graph families contain only 2-connected graphs, which have ear decompositions. We develop a technique to generate families of unlabeled 2-connected graphs using ear augmentations and apply this technique to two problems. In the first application, we search for uniquely K_r-saturated graphs and find the list of uniquely K_4-saturated graphs on at most 12 vertices, supporting current conjectures for this problem. In the second application, we verifying the Edge Reconstruction Conjecture for all 2-connected graphs on at most 12 vertices. This technique can be easily extended to more problems concerning 2-connected graphs.

[1]  P. Kaski,et al.  Classification Algorithms for Codes and Designs , 2005 .

[2]  Derek J Weitzel,et al.  CAMPUS GRIDS: A FRAME WORK TO FACILITATE RESOURCE SHARING , 2011 .

[3]  Joshua N. Cooper,et al.  Uniquely C4-Saturated Graphs , 2012, Graphs Comb..

[4]  P. Erdös On an extremal problem in graph theory , 1970 .

[5]  Bennet Manvel,et al.  Reconstruction of Cacti , 1969, Canadian Journal of Mathematics.

[6]  Andrzej Dudek,et al.  On the size and structure of graphs with a constant number of 1-factors , 2012, Discret. Math..

[7]  Yongzhi Yang The reconstruction conjecture is true if all 2-connected graphs are reconstructible , 1988, J. Graph Theory.

[8]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[9]  Vladimír Müller,et al.  The edge reconstruction hypothesis is true for graphs with more than n · log2n edges , 1977, J. Comb. Theory, Ser. B.

[10]  L. Lovász A note on the line reconstruction problem , 1972 .

[11]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[12]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[13]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[14]  Bennet Manvel,et al.  Reconstruction of Trees , 1970, Canadian Journal of Mathematics.

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  A. J. Radcliffe,et al.  McKay ’ s Canonical Graph Labeling Algorithm , 2008 .

[17]  Derrick Stolee Generating p-extremal graphs , 2011 .

[18]  Robert W. Robinson,et al.  Enumeration of non-separable graphs* , 1970 .

[19]  Timothy R. S. Walsh,et al.  The k‐Connectedness of Unlabelled Graphs , 1978 .

[20]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[21]  J. A. Bondy,et al.  Surveys in Combinatorics, 1991: “A Graph Reconstructor's Manual” , 1991 .

[22]  Stephen G. Hartke,et al.  Extremal Graphs With a Given Number of Perfect Matchings , 2013, J. Graph Theory.

[23]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[24]  Jorge Luis Rodriguez,et al.  The Open Science Grid , 2005 .

[25]  Bennet Manvel On reconstructing graphs from their sets of subgraphs , 1976, J. Comb. Theory, Ser. B.

[26]  Brendan D. McKay,et al.  Small graphs are reconstructible , 1997, Australas. J Comb..

[27]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[28]  The reconstruction conjecture is true if all 2‐connected graphs are reconstructible , 1988 .