Broad Genomic Sampling Reveals a Smut Pathogenic Ancestry of the Fungal Clade Ustilaginomycotina

Ustilaginomycotina is home to a broad array of fungi including important plant pathogens collectively called smut fungi. Smuts are biotrophs that produce characteristic perennating propagules called teliospores, one of which, Ustilago maydis, is a model genetic organism. Broad exploration of smut biology has been hampered by limited phylogenetic resolution of Ustilaginiomycotina as well as an overall lack of genomic data for members of this subphylum. In this study, we sequenced eight Ustilaginomycotina genomes from previously unrepresented lineages, deciphered ordinal-level phylogenetic relationships for the subphylum, and performed comparative analyses. Unlike other Basidiomycota subphyla, all sampled Ustilaginomycotina genomes are relatively small and compact. Ancestral state reconstruction analyses indicate that teliospore formation was present at the origin of the subphylum. Divergence time estimation dates the divergence of most extant smut fungi after that of grasses (Poaceae). However, we found limited conservation of well-characterized genes related to smut pathogenesis from U. maydis, indicating dissimilar pathogenic mechanisms exist across other smut lineages. The genomes of Malasseziomycetes are highly diverged from the other sampled Ustilaginomycotina, likely due to their unique history as mammal-associated lipophilic yeasts. Despite extensive genomic data, the phylogenetic placement of this class remains ambiguous. Although the sampled Ustilaginomycotina members lack many core enzymes for plant cell wall decomposition and starch catabolism, we identified several novel carbohydrate active enzymes potentially related to pectin breakdown. Finally, ∼50% of Ustilaginomycotina species-specific genes are present in previously undersampled and rare lineages, highlighting the importance of exploring fungal diversity as a resource for novel gene discovery.

[1]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[2]  F. Oberwinkler,et al.  On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes , 2016, PloS one.

[3]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[4]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[5]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[6]  M. Catherine Aime,et al.  Rare or rarely detected? Ceraceosorus guamensis sp. nov.: a second described species of Ceraceosorales and the potential for underdetection of rare lineages with common sampling techniques , 2016, Antonie van Leeuwenhoek.

[7]  Sarah Calvo,et al.  Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis , 2006, Nature.

[8]  M. Weiß,et al.  Entorrhizomycota: A New Fungal Phylum Reveals New Perspectives on the Evolution of Fungi , 2015, PloS one.

[9]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[10]  Kálmán Vánky,et al.  Illustrated Genera of Smut Fungi , 1987 .

[11]  M. Escudero Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation? , 2015, American journal of botany.

[12]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[13]  A. Goesmann,et al.  Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. , 2013, Journal of biotechnology.

[14]  S. Reissmann,et al.  Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis‐induced tumour formation , 2011, Molecular microbiology.

[15]  Kai Heimel,et al.  The Ustilago maydis Clp1 Protein Orchestrates Pheromone and b-Dependent Signaling Pathways to Coordinate the Cell Cycle and Pathogenic Development[W] , 2010, Plant Cell.

[16]  Ramon Wahl,et al.  A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis , 2010, PLoS biology.

[17]  Eveline Guého-Kellermann,et al.  Malassezia Baillon (1889) , 2011 .

[18]  Heidelberg,et al.  Taxonomic revisions in the Microstromatales: two new yeast species, two new genera, and validation of Jaminaea and two Sympodiomycopsis species , 2017, Mycological Progress.

[19]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[20]  B. Dujon Yeast evolutionary genomics , 2010, Nature Reviews Genetics.

[21]  D. Hibbett,et al.  Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts , 2014, Nature Communications.

[22]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[23]  B. Henrissat,et al.  Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. , 2014, The New phytologist.

[24]  Laura R. Emery,et al.  Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants , 2012, Front. Plant Sci..

[25]  M. Piepenbring,et al.  Teliospores of smut fungi general aspects of teliospore walls and sporogenesis , 1998, Protoplasma.

[26]  Matthias Lutz,et al.  On the evolution of smut fungi on their hosts. , 2004 .

[27]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[28]  Christina A. Cuomo,et al.  Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens , 2011, PLoS pathogens.

[29]  Christina A. Cuomo,et al.  Obligate biotrophy features unraveled by the genomic analysis of rust fungi , 2011, Proceedings of the National Academy of Sciences.

[30]  G. Sherlock,et al.  Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads , 2010, BMC Genomics.

[31]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[32]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[33]  Liang Liu,et al.  STRAW: Species TRee Analysis Web server , 2013, Nucleic Acids Res..

[34]  Wayne E. Clarke,et al.  De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes , 2011, BMC Genomics.

[35]  Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951 , 2014, Genome Announcements.

[36]  Jonathan D. G. Jones,et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans , 2009, Nature.

[37]  J. Kämper,et al.  Functional Genomics of Smut Fungi , 2014 .

[38]  Jacqueline E. Schein,et al.  Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation , 2014, PLoS genetics.

[39]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[40]  C. Rosa,et al.  Moniliella Stolk & Dakin (1966) , 2011 .

[41]  Teun Boekhout,et al.  The yeasts : a taxonomic study , 1972 .

[42]  Jason E Stajich,et al.  Toward genome-enabled mycology , 2013, Mycologia.

[43]  W. Murphy,et al.  Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification. , 2017, Molecular phylogenetics and evolution.

[44]  D. Pearl,et al.  Estimating species phylogenies using coalescence times among sequences. , 2009, Systematic biology.

[45]  James K. Hane,et al.  Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen Stagonospora nodorum[W][OA] , 2007, The Plant Cell Online.

[46]  C. Osborne,et al.  Molecular dating, evolutionary rates, and the age of the grasses. , 2014, Systematic biology.

[47]  B. Henrissat,et al.  Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis , 2012, BMC Genomics.

[48]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[49]  J. Horiuchi,et al.  Draft Genome Sequence of the Basidiomycetous Yeast-Like Fungus Pseudozyma hubeiensis SY62, Which Produces an Abundant Amount of the Biosurfactant Mannosylerythritol Lipids , 2013, Genome Announcements.

[50]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[51]  S. Raffaele,et al.  Genome evolution in filamentous plant pathogens: why bigger can be better , 2012, Nature Reviews Microbiology.

[52]  T. Nühse Cell wall integrity signaling and innate immunity in plants , 2012, Front. Plant Sci..

[53]  Christina A. Cuomo,et al.  Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici , 2011 .

[54]  D. Hibbett,et al.  Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. , 2016, Molecular biology and evolution.

[55]  J. Sampaio,et al.  The simple-septate basidiomycetes: a synopsis , 2006, Mycological Progress.

[56]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[57]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[58]  T. Boekhout,et al.  Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences , 2000 .

[59]  J. Fernandes,et al.  Maize Tumors Caused by Ustilago maydis Require Organ-Specific Genes in Host and Pathogen , 2010, Science.

[60]  Heinrich Fahrenholz,et al.  Ectoparasiten und Abstammungslehre , 1913 .

[61]  J. Spatafora Assembling The Fungal Tree of Life (AFTOL) , 2005 .

[62]  V. Savolainen,et al.  Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time , 2010 .

[63]  T. Boekhout,et al.  Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina , 2015, Studies in mycology.

[64]  R. Bauer,et al.  Ultrastructural markers and systematics in smut fungi and allied taxa , 1997 .

[65]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[66]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[67]  U. Güldener,et al.  Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison , 2010, Science.

[68]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[69]  T. Boekhout,et al.  Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina , 2014, Persoonia.

[70]  P. Spanu The genomics of obligate (and nonobligate) biotrophs. , 2012, Annual review of phytopathology.

[71]  The genus Meira: phylogenetic placement and description of a new species , 2013, Antonie van Leeuwenhoek.

[72]  M. Toome,et al.  Violaceomyces palustris gen. et sp. nov. and a new monotypic lineage, Violaceomycetales ord. nov. in Ustilaginomycetes , 2015, Mycologia.

[73]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[74]  Jin-Rong Xu,et al.  Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi , 2013, BMC Genomics.

[75]  G. Sherlock,et al.  Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus , 2017, Genome Biology.

[76]  D. Hibbett,et al.  Fueling the future with fungal genomics , 2011 .

[77]  Bernard Henrissat,et al.  Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea , 2011, PLoS genetics.

[78]  Marco Thines,et al.  Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome , 2010, Science.

[79]  J. Mordue Illustrated genera of smut fungi, K. Vánky, Walter Julich (Eds.), in: Cryptogamic Studies, vol. 1. Gustav Fischer Verlag, Stuttgart (1987), Pp. viii + 159, 68 fig. Price DM 68 , 1988 .

[80]  R. Bauer,et al.  A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data1 , 2006, Mycologia.

[81]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[82]  M. Berbee,et al.  Dating divergences in the Fungal Tree of Life: review and new analyses. , 2006, Mycologia.

[83]  J. Heitman,et al.  Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis , 2013, mBio.

[84]  P. Hu,et al.  Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens , 2007, Proceedings of the National Academy of Sciences.

[85]  D. Hibbett,et al.  The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. , 2012, Fungal genetics and biology : FG & B.

[86]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[87]  Thomas M. Keane,et al.  Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, Armillaria mellea: Toward a New Infection Model System , 2013, Journal of proteome research.

[88]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[89]  Andrey M. Yurkov,et al.  11 Ustilaginomycotina 0 Ustilaginomycotina , 2014 .

[90]  J. Jurka,et al.  Next Generation Sequencing Provides Rapid Access to the Genome of Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust , 2011, PloS one.

[91]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[92]  Bernard Henrissat,et al.  Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire , 2010, Genome Biology.

[93]  A. van Belkum,et al.  The role of Malassezia species in the ecology of human skin and as pathogens. , 1998, Medical mycology.