Strategy for Carbon Gasification from Porous Ni-YSZ Anodes of Industrial-Sized ASC-SOFCs and Effects of Carbon Growth

[1]  G. Froment,et al.  Steam/CO2 Reforming of Methane. Carbon Filament Formation by the Boudouard Reaction and Gasification by CO2, by H2, and by Steam: Kinetic Study , 2002 .

[2]  Nigel P. Brandon,et al.  Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane , 2013 .

[3]  P. Mortensen,et al.  Industrial scale experience on steam reforming of CO2-rich gas , 2015 .

[4]  Hongpeng He,et al.  Carbon deposition on Ni/YSZ composites exposed to humidified methane , 2007 .

[5]  Christoph Hochenauer,et al.  Carbon Deposition Simulation in Porous SOFC Anodes: A Detailed Numerical Analysis of Major Carbon Precursors , 2015 .

[6]  Zongping Shao,et al.  Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. , 2013, Chemical reviews.

[7]  C. Hochenauer,et al.  Numerical SOFC Anode Catalyst Occupation Study: Internal Reforming of Carbonaceous Fuel Mixtures , 2016 .

[8]  J. Rostrup-Nielsen,et al.  Reactivity of carbon deposited on nickel-copper alloy catalysts from the decomposition of methane , 1986 .

[9]  Antonio Monzón,et al.  Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model , 2010 .

[10]  J. Rostrup-Nielsen Coking on nickel catalysts for steam reforming of hydrocarbons , 1974 .

[11]  Suttichai Assabumrungrat,et al.  Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support , 2007 .

[12]  M. Marinšek,et al.  Deactivation of Ni-YSZ Material in Dry Methane and Oxidation of Various Forms of Deposited Carbon , 2012 .

[13]  Ryuji Kikuchi,et al.  Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets , 2002 .

[14]  Meilin Liu,et al.  Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels , 2014 .

[15]  J. Walmsley,et al.  Initiation of Metal Dusting Corrosion in Conversion of Natural Gas to Syngas Studied under Industrially Relevant Conditions , 2014 .

[16]  O. Deutschmann,et al.  Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism , 2011 .

[17]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[18]  Kiyoshi Otsuka,et al.  Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts , 2004 .

[19]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[20]  Hiroshi Takahashi,et al.  Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs , 2006 .

[21]  R. M. Barrer Diffusion in and through solids , 1941 .

[22]  Ahmed F. Ghoniem,et al.  On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions , 2013 .

[23]  Christoph Hochenauer,et al.  An experimental and numerical study of performance of large planar ESC-SOFCs and experimental investigation of carbon depositions , 2016 .

[24]  J. Bae,et al.  Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure , 2010 .

[25]  Christoph Hochenauer,et al.  Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate , 2015 .

[26]  J. Rostrup-Nielsen Mechanisms of carbon formation on nickel-containing catalysts , 1977 .

[27]  Nigel P. Brandon,et al.  Use of gasification syngas in SOFC: Impact of real tar on anode materials , 2012 .

[28]  Detlef Stolten,et al.  Fuel Cell Science and Engineering, Materials, Processes, Systems and Technology , 2012 .

[29]  S. Takenaka,et al.  Sequential production of H2 and CO over supported Ni catalysts , 2004 .

[30]  M. Dokiya,et al.  Electrical and Ionic Conductivity of Gd‐Doped Ceria , 2000 .

[31]  George Tsatsaronis,et al.  Simulation and exergetic evaluation of CO2 capture in a solid-oxide fuel-cell combined-cycle power plant , 2014 .

[32]  D. Trimm,et al.  The kinetics of gasification of carbon deposited on nickel catalysts , 1979 .

[33]  S. Takenaka,et al.  Structural change of Ni species during the methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts , 2003 .

[34]  S. Shimpalee,et al.  Comparison of Hydrogen and Methane as fuel in Micro-Tubular SOFC using Electrochemical Analysis , 2011 .

[35]  Raymond J. Gorte,et al.  Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell , 2001 .

[36]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[37]  M. Marinšek,et al.  Ni–YSZ SOFC anodes—Minimization of carbon deposition , 2007 .

[38]  Sangho Yoon,et al.  The operating characteristics of solid oxide fuel cells driven by diesel autothermal reformate , 2008 .

[39]  Kevin Kendall,et al.  Sensitivity of nickel cermet anodes to reduction conditions , 2005 .

[40]  Jens R. Rostrup-Nielsen,et al.  Activity of nickel catalysts for steam reforming of hydrocarbons , 1973 .

[41]  Christoph Hochenauer,et al.  In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition , 2016 .

[42]  J. Rostrup-Nielsen,et al.  Whisker carbon in perspective , 2011 .

[43]  Miao He,et al.  Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported f , 2011 .

[44]  J. Hill,et al.  In Situ Raman Studies of Carbon Removal from High Temperature Ni–YSZ Cermet Anodes by Gas Phase Reforming Agents , 2013 .

[45]  E. Ivers-Tiffée,et al.  Coke Formation and Degradation in SOFC Operation with a Model Reformate from Liquid Hydrocarbons , 2008 .

[46]  J. Sehested,et al.  Four challenges for nickel steam-reforming catalysts , 2006 .

[47]  Ryan Clemmer,et al.  Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane , 2008 .

[48]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .

[49]  M. Willinger,et al.  Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2 , 2014, Chemistry of materials : a publication of the American Chemical Society.

[50]  J. Rostrup-Nielsen,et al.  Carbon Formation and CO Methanation on Silica-Supported Nickel and Nickel–Copper Catalysts in CO + H2Mixtures , 1996 .