Two-stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes

This article presents a two-stage stochastic equilibrium problem with equilibrium constraints (SEPEC) model. Some source problems which motivate the model are discussed. Monte Carlo sampling method is applied to solve the SEPEC. Convergence analysis on the statistical estimators of Nash equilibria and Nash stationary points are presented.

[1]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[2]  Gül Gürkan,et al.  Approximations of Nash equilibria , 2008, Math. Program..

[3]  John C. S. Lui,et al.  A game-theoretic analysis of the implications of overlay network traffic on ISP peering , 2008, Comput. Networks.

[4]  Thomas M. Surowiec,et al.  Explicit stationarity conditions and solution characterization for equilibrium problems with equilibrium constraints , 2010 .

[5]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[6]  Boris S. Mordukhovich,et al.  Optimization and equilibrium problems with equilibrium constraints , 2005 .

[7]  Messaoud Bounkhel,et al.  Quasi-Variational Inequalities , 2012 .

[8]  Sven Leyffer,et al.  Solving multi-leader–common-follower games , 2010, Optim. Methods Softw..

[9]  A. Werner Bilevel stochastic programming problems: Analysis and application to telecommunications , 2005 .

[10]  Hess Christian,et al.  CHAPTER 14 – Set-Valued Integration and Set-Valued Probability Theory: An Overview , 2002 .

[11]  Andreas Haufler,et al.  Capital taxation and production efficiency in an open economy , 1999 .

[12]  Andrew Koh Nash Equilibria, collusion in games and the coevolutionary particle swarm algorithm , 2008 .

[13]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[14]  Jane J. Ye,et al.  Necessary Optimality Conditions for Two-Stage Stochastic Programs with Equilibrium Constraints , 2010, SIAM J. Optim..

[15]  U. Shanbhag,et al.  On the characterization of solution sets of smooth and nonsmooth stochastic Nash games , 2010, Proceedings of the 2010 American Control Conference.

[16]  Daniel Ralph,et al.  Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices , 2007, Oper. Res..

[17]  A. Shapiro,et al.  Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation , 2008 .

[18]  Yue Wu,et al.  A two stage stochastic equilibrium model for electricity markets with two way contracts , 2010, 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems.

[19]  Boris S. Mordukhovich,et al.  Equilibrium problems with equilibrium constraints via multiobjective optimization , 2004, Optim. Methods Softw..

[20]  Huifu Xu,et al.  A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application , 2009, Oper. Res..

[21]  Huifu Xu,et al.  Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications , 2009, Math. Program..

[22]  A. Shapiro Stochastic Programming with Equilibrium Constraints , 2006 .

[23]  Huifu Xu,et al.  Stochastic Nash equilibrium problems: sample average approximation and applications , 2013, Comput. Optim. Appl..

[24]  Jirí V. Outrata,et al.  A note on a class of equilibrium problems with equilibrium constraints , 2004, Kybernetika.

[25]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[26]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .

[27]  Huifu Xu Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming , 2010 .

[28]  Stephen M. Robinson,et al.  Sample-path optimization of convex stochastic performance functions , 1996, Math. Program..

[29]  Sven Leyffer,et al.  Solving Multi-Leader-Follower Games , 2005 .

[30]  Gui-Hua Lin,et al.  Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints , 2008, Math. Methods Oper. Res..

[31]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[32]  René Henrion,et al.  ANALYSIS OF M-STATIONARY POINTS TO AN EPEC MODELING OLIGOPOLISTIC COMPETITION IN AN ELECTRICITY SPOT MARKET ∗ , 2012 .

[33]  Darinka Dentcheva,et al.  Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints , 2004, Math. Program..

[34]  Martin Kolmar,et al.  The Taxation of Financial Capital Under Asymmetric Information and the Tax-Competition Paradox , 2003, SSRN Electronic Journal.

[35]  Daniel Ralph,et al.  Mathematical programs with complementarity constraints in traffic and telecommunications networks , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Che-Lin Su,et al.  Analysis on the forward market equilibrium model , 2007, Oper. Res. Lett..

[37]  Peter W. Glynn,et al.  A Complementarity Framework for Forward Contracting Under Uncertainty , 2011, Oper. Res..

[38]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[39]  J. Pang,et al.  Strategic gaming analysis for electric power systems: an MPEC approach , 2000 .

[40]  René Henrion,et al.  On M-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling , 2007 .

[41]  A. Ruszczynski Stochastic Programming Models , 2003 .

[42]  Jian Yao,et al.  Two-settlement electricity markets with price caps and Cournot generation firms , 2007, Eur. J. Oper. Res..

[43]  Muhammad Aslam Noor,et al.  Quasi variational inequalities , 1988 .

[44]  Stephen M. Robinson,et al.  Analysis of Sample-Path Optimization , 1996, Math. Oper. Res..

[45]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[46]  Hai Yang,et al.  Private Road Competition and Equilibrium with Traffic Equilibrium Constraints , 2009 .

[47]  Andreas Ehrenmann,et al.  A Comparison of Electricity Market Designs in Networks , 2003, Oper. Res..

[48]  William H. K. Lam,et al.  THE GENERALIZED NASH EQUILIBRIUM MODEL FOR OLIGOPOLISTIC TRANSIT MARKET WITH ELASTIC DEMAND , 2005 .

[49]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[50]  Georg Ch. Pflug,et al.  Electricity swing options: Behavioral models and pricing , 2009, Eur. J. Oper. Res..

[51]  Yongchao Liu,et al.  Stability Analysis of Two-Stage Stochastic Mathematical Programs with Complementarity Constraints via NLP Regularization , 2011, SIAM J. Optim..

[52]  Huifu Xu,et al.  A note on uniform exponential convergence of sample average approximation of random functions , 2012 .