Multivariate regression estimation local polynomial fitting for time series

We consider the estimation of the multivariate regression function m(x1, ..., xd) = E[[psi](Yd)X1 = x1, ..., Xd = xd], and its partial derivatives, for stationary random processes Yi, Xi using local higher-order polynomial fitting. Particular cases of [psi] yield estimation of the conditional mean, conditional moments and conditional distributions. Joint asymptotic normality is established for estimates of the regression function and its partial derivatives for strongly mixing and [varrho]-mixing processes. Expressions for the bias and variance/covariance matrix (of the asymptotically normal distribution) for these estimators are given.

[1]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[2]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[3]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[4]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[5]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[6]  George G. Roussas,et al.  Asymptotic normality of the recursive kernel regression estimate under dependence conditions , 1992 .

[7]  W. Härdle Applied Nonparametric Regression , 1991 .

[8]  Pascal Massart,et al.  The functional central limit theorem for strongly mixing processes , 1994 .

[9]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[10]  E. Masry Local Polynomial Estimation of Regression Functions for Mixing Processes , 1997 .

[11]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[12]  E. Nadaraya On Estimating Regression , 1964 .

[13]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[14]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[15]  P. Robinson,et al.  On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators , 1986 .

[16]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .

[17]  Jianqing Fan,et al.  Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes , 1992 .

[18]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[19]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[20]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[21]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[22]  A. Kolmogorov,et al.  On Strong Mixing Conditions for Stationary Gaussian Processes , 1960 .

[23]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[24]  C. J. Stone,et al.  Nonparametric function estimation involving time series , 1992 .

[25]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[26]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[27]  Richard L. Wheeden Measure and integral , 1977 .

[28]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[29]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[30]  Wolfgang Härdle,et al.  Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .

[31]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .