Control of a Multivariable System Using Optimal Control Pairs: A Quadruple-Tank Process

This paper deals with one of the possible ways to control multivariable (MIMO) control loops. The suggested control design procedure uses the so-called primary controllers, auxiliary controllers, and also correction members. Parameters of the primary controllers are determined for the optimal control pairs using arbitrary single-variable synthesis methods; namely, the modulus optimum method, the balanced tuning method, and the desired model method. The optimal control pairs are determined using the so-called relative gain array tool or the relative normalized gain array tool combined with other tools, as the condition number or the Niederlinski index. The auxiliary feedback controllers serve for ensuring a control loop decoupling. Invariance to load disturbance of a control loop is realized by using the correction members. The novelty lies especially in the combination of the original inverted decoupling with disturbance rejection and provided tuning methods. The proposed control design for a MIMO loop is verified by simulation for the two-variable controlled plant of a quadruple-tank process and evaluated by using various criteria. Moreover, a numerical comparison to some other methods is given to the reader.

[1]  Petr Husek,et al.  Decentralized PI Controller Design Based on Phase Margin Specifications , 2014, IEEE Transactions on Control Systems Technology.

[2]  Clara M. Ionescu,et al.  Multivariable model-based control strategies for level control in a quadruple tank process , 2013, 2013 17th International Conference on System Theory, Control and Computing (ICSTCC).

[3]  Raymond Gorez,et al.  Balanced Tuning of PI Controllers , 2000, Eur. J. Control.

[4]  Subhabrata Ray,et al.  Sliding mode control of quadruple tank process , 2009 .

[5]  Wilhelm Tegethoff,et al.  Selection of Decoupling Control Methods Suited for Automated Design for Uncertain TITO Processes , 2018, 2018 IEEE 14th International Conference on Control and Automation (ICCA).

[6]  Seiji Hashimoto,et al.  Slow Mode-Based Control Method for Multi-Point Temperature Control System , 2019 .

[7]  Fan Gu,et al.  Robust decoupling control of BTT vehicle based on PSO , 2010, Int. J. Bio Inspired Comput..

[8]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[9]  Thomas J. McAvoy,et al.  Interaction analysis : principles and applications , 1983 .

[10]  Kurt E H aggblom Partial Relative Gain A New Tool for Control Structure Selection , 2005 .

[11]  H. Rosenbrock Design of multivariable control systems using the inverse Nyquist array , 1969 .

[12]  Jiri Vojtesek,et al.  Adaptive Control of Temperature Inside Plug-Flow Chemical Reactor Using 2DOF Controller , 2018, Innovation, Engineering and Entrepreneurship.

[13]  W. Cai,et al.  A practical loop pairing criterion for multivariable processes , 2005 .

[14]  Fernando Morilla,et al.  Centralized Inverted Decoupling Control , 2013 .

[15]  L. Ljung,et al.  Control theory : multivariable and nonlinear methods , 2000 .

[16]  Lihua Xie,et al.  RNGA based control system configuration for multivariable processes , 2009 .

[17]  Fernando Morilla,et al.  An extended approach of inverted decoupling , 2011 .

[18]  Gilberto Reynoso-Meza,et al.  A Loop Pairing Method for Multivariable Control Systems Under a Multi-Objective Optimization Approach , 2019, IEEE Access.

[19]  Tao Zhang,et al.  A Review of Industrial MIMO Decoupling Control , 2019, International Journal of Control, Automation and Systems.

[20]  Raymond Gorez,et al.  Nonmodel-Based Explicit Design Relations for PID Controllers , 2000 .

[21]  Agata Nawrocka,et al.  Balance Platform Vibration Control , 2013 .

[22]  Nguyen Van Chi Adaptive feedback linearization control for twin rotor multiple-input multiple-output system , 2017 .

[23]  Qiang Chen,et al.  Interaction measurement for complex multivariable models with various reference inputs based on RNGA , 2017, 2017 11th Asian Control Conference (ASCC).

[24]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[25]  Arash Avvalabadi,et al.  A new mathematical approach for input-output pairing in MIMO square systems , 2014, 2014 22nd Iranian Conference on Electrical Engineering (ICEE).

[26]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[27]  Vasilios Manousiouthakis,et al.  Synthesis of decentralized process control structures using the concept of block relative gain , 1986 .

[28]  Li Ping,et al.  Temperature and humidity control with a model predictive control method in the air-conditioning system , 2017, 2017 International Conference on Advanced Mechatronic Systems (ICAMechS).

[29]  Amit Jain,et al.  Sensitivity of Relative Gain Array for Processes with Uncertain Gains and Residence Times , 2016 .

[30]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[31]  Yunpeng Zhang,et al.  Multivariable Finite Time Attitude Control for Quadrotor UAV: Theory and Experimentation , 2018, IEEE Transactions on Industrial Electronics.

[32]  Ping Zhou,et al.  Analytical design based hierarchical control for non-square MIMO wood-chip refining process. , 2019, ISA transactions.

[33]  M. Chidambaram,et al.  Controller Design for MIMO Processes Based on Simple Decoupled Equivalent Transfer Functions and Simplified Decoupler , 2012 .

[34]  Hong Bao,et al.  Adaptive Reduced Dimension Fuzzy Decoupling Control Method with Its Application to a Deployable Antenna Panel , 2018 .

[35]  André Desbiens,et al.  Simplified, ideal or inverted decoupling? , 1998 .

[36]  Domitilla Del Vecchio,et al.  Boundary control for an industrial under-actuated tubular chemical reactor , 2005 .

[37]  Kai-Yuan Cai,et al.  Adaptive Multivariable Control for Multiple Resource Allocation of Service-Based Systems in Cloud Computing , 2019, IEEE Access.

[38]  Libor Pekař,et al.  A Potential Use of the Balanced Tuning Method for the Control of a Class of Time-Delay Systems , 2019, 2019 22nd International Conference on Process Control (PC19).

[39]  Sigurd Skogestad,et al.  Simple frequency-dependent tools for control system analysis, structure selection and design , 1992, Autom..

[40]  Thomas J. McAvoy,et al.  Some results on dynamic interaction analysis of complex control systems , 1983 .

[41]  Jeang-Lin Chang,et al.  Discrete-time PID observer design for state and unknown input estimations in noisy measurements , 2015 .

[42]  Yunhui Luo,et al.  Improved inverted decoupling control using dead-time compensator for MIMO processes , 2010, Proceedings of the 29th Chinese Control Conference.

[43]  M. Morari,et al.  Closed-loop properties from steady-state gain information , 1985 .

[44]  Péricles R. Barros,et al.  Frequency domain evaluation and redesign of inverted decoupler , 2019 .

[45]  F. G. Greg Shinskey,et al.  Process Control Systems: Application, Design and Tuning , 1990 .

[46]  Bidyadhar Subudhi,et al.  Design and experimental realization of a robust decentralized PI controller for a coupled tank system. , 2019, ISA transactions.

[47]  Libor Pekař,et al.  Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results , 2018, IEEE Access.

[48]  Dragoslav D. Šiljak,et al.  Decentralized control and computations: status and prospects , 1996 .

[49]  Arjin Numsomran,et al.  Adaptive Fractional Order PIλDμ Control for Multi-Configuration Tank Process (MCTP) Toolbox , 2018 .

[50]  Harold L. Wade,et al.  Inverted decoupling : a neglected technique , 1997 .

[51]  Guohai Liu,et al.  A review of decoupling control based on multiple models , 2012, 2012 24th Chinese Control and Decision Conference (CCDC).

[52]  Kwan-Woong Gwak,et al.  Structural analysis and optimization of nonlinear control systems using singular value decomposition , 2005 .

[53]  Fernando Morilla,et al.  Multivariable PID control by decoupling , 2016, Int. J. Syst. Sci..

[54]  Y. Arkun,et al.  A new approach to defining a dynamic relative gain , 2001 .

[55]  Binoy Krishna Roy,et al.  Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process. , 2016, ISA transactions.

[56]  Edward J. Davison,et al.  Decentralized control strategies for dynamic routing , 2002 .

[57]  Björn Halvarsson,et al.  Interaction Analysis in Multivariable Control Systems Applications to Bioreactors for Nitrogen Removal , 2010 .

[58]  Yongdo Lim,et al.  Finite-time consensus of Markov jumping multi-agent systems with time-varying actuator faults and input saturation. , 2018, ISA transactions.

[59]  A. Niederlinski A heuristic approach to the design of linear multivariable interacting control systems , 1971 .

[60]  Wenjian Cai,et al.  Decentralized Control System Design for MIMO Processes with Integrators/ Differentiators , 2010 .

[61]  Abdalhady Ramadan,et al.  Comparative study of different decoupling schemes for TITO binary distillation column via PI controller , 2018, IEEE/CAA Journal of Automatica Sinica.

[62]  Ali M. H. Kadhim Selection of Decentralized Control Configuration for Uncertain Systems , 2018 .

[63]  Weihua Gui,et al.  Design of decoupling Smith control for multivariable system with time delays , 2011 .

[64]  Zhong-xiang Zhu Variable Pairing Selection Based on Individual and Overall Interaction Measures , 1996 .

[65]  Jung,et al.  An Analytical Design of Simplified Decoupling Smith Predictors for Multivariable Processes , 2019, Applied Sciences.

[66]  Coşku Kasnakoğlu,et al.  Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design , 2016, PloS one.

[67]  Libor Pekař,et al.  Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays , 2017 .

[68]  Emanuele Crisostomi,et al.  ARGA loop pairing criteria for multivariable systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[69]  Mario L. Ruz,et al.  Decentralized PID control with inverted decoupling and superheating reference generation for efficient operation: Application to the Benchmark PID 2018 , 2018 .

[70]  Torsten Jeinsch,et al.  Computer-Controlled Systems with Delay: A Transfer Function Approach , 2019 .

[71]  Furong Gao,et al.  Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays , 2007 .

[72]  Xiaojun Zhou,et al.  Fast gradient-based distributed optimisation approach for model predictive control and application in four-tank benchmark , 2015 .

[73]  T. Wik,et al.  A new input/output pairing strategy based on linear quadratic Gaussian control , 2009, 2009 IEEE International Conference on Control and Automation.

[74]  Weidong Zhang,et al.  Improvement on an inverted decoupling technique for a class of stable linear multivariable processes. , 2007, ISA transactions.

[75]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[76]  Miroslav R. Mataušek,et al.  PID controller design of TITO system based on ideal decoupler , 2010 .

[77]  A. Fatehi,et al.  Automatic pairing of MIMO plants using normalized RGA , 2007, 2007 Mediterranean Conference on Control & Automation.

[78]  Qibing Jin,et al.  Modified disturbance observer-based control for stable multivariate processes with multiple time delays , 2018 .

[80]  Vinay Kariwala,et al.  Minimum Variance Benchmark for Performance Assessment of Decentralized Controllers , 2012 .

[81]  David Rees,et al.  Industrial Digital Control Systems , 1988 .

[82]  Tianyou Chai,et al.  Neural-Network-Based Nonlinear Adaptive Dynamical Decoupling Control , 2007, IEEE Transactions on Neural Networks.

[83]  Thomas F. Edgar,et al.  Static decouplers for control of multivariable processes , 2005 .

[84]  Da Sun,et al.  Interaction Measures for Control Configuration Selection Based on Interval Type-2 Takagi–Sugeno Fuzzy Model , 2018, IEEE Transactions on Fuzzy Systems.

[85]  G. Hou,et al.  Coupling analysis and loop pairing method via an information-theoretic approach , 2016, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA).

[86]  A. Khaki-Sedigh,et al.  Control configuration selection for multivariable plants , 2009 .

[87]  Wei Lv,et al.  A Frequency Domain Decoupling Method and Multivariable Controller Design for Turbofan Engines , 2017, IEEE Access.

[88]  Rodolfo César Costa Flesch,et al.  A Method for Designing Decoupled Filtered Smith Predictor for Square MIMO Systems With Multiple Time Delays , 2018, IEEE Transactions on Industry Applications.

[89]  Michel Kinnaert,et al.  Interaction measures and pairing of controlled and manipulated variables for multiple-input-multiple-output systems: a survey , 1995 .

[90]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[91]  O. Boubaker,et al.  On MIMO PID Control of the Quadruple-Tank Process Via ILMIs Approaches : Minimum and Non-Minimum Case Studies , 2013 .

[92]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[93]  Xianwen Gao,et al.  Adaptive Sliding Mode Decoupling Control with Data-Driven Sliding Surface for Unknown MIMO Nonlinear Discrete Systems , 2017, Circuits Syst. Signal Process..

[94]  Min-Sen Chiu,et al.  Decentralized control structure selection based on integrity considerations , 1990 .