EU-OSTID: A Collection of Transposon Insertional Mutants for Functional Genomics in Rice
暂无分享,去创建一个
Gaëtan Droc | Andy Pereira | Emmanuel Guiderdoni | Paul Christou | Teresa Capell | Annemarie H. Meijer | Pere Puigdomènech | Lucia Colombo | Stefano Berri | Pietro Piffanelli | Fabio Fornara | S. Berri | G. Droc | A. Meijer | P. Christou | T. Capell | F. Fornara | P. Ouwerkerk | L. Colombo | P. Puigdoménech | E. Guiderdoni | Andy Pereira | V. González | P. Piffanelli | P. Lan | R. Greco | L. J. G. V. Enckevort | C. Gagneur | Christele Weber | P. Cabot | B. Miro | Marta Rafel | E. Pé | Raffaella Greco | Berta Miro | L. J. G van Enckevort | Cyril Gagneur | Christele Weber | Víctor M. González | Pere Cabot | Ping Lan | Marta Rafel | Pieter B.F. Ouwerkerk | Enrico Pè | Puigdomènech | A. Pereira | P. Puigdomènech | E. Pe | L. J. G. Enckevort | J. G. V. Enckevort | Pere | ’. EnricoPe | Lucia | Colombo
[1] M. Delseny. Towards an accurate sequence of the rice genome. , 2003, Current opinion in plant biology.
[2] Chul Min Kim,et al. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. , 2004, The Plant journal : for cell and molecular biology.
[3] M. Matsuoka,et al. Regional Expression of the Rice KN1-Type Homeobox Gene Family during Embryo, Shoot, and Flower Development , 1999, Plant Cell.
[4] Y. Onodera,et al. A Rice Functional Transcriptional Activator, RISBZ1, Responsible for Endosperm-specific Expression of Storage Protein Genes through GCN4 Motif* , 2001, The Journal of Biological Chemistry.
[5] Yaoguang Liu,et al. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. , 1995, Genomics.
[6] E. Coen,et al. The TCP domain: a motif found in proteins regulating plant growth and development. , 1999, The Plant journal : for cell and molecular biology.
[7] A. Pereira. A transgenic perspective on plant functional genomics , 2004, Transgenic Research.
[8] A. Miyao,et al. Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.012559. , 2003, The Plant Cell Online.
[9] A. Pereira,et al. Transposon tagging with the En-I system. , 1998, Methods in molecular biology.
[10] Hong-Gyu Kang,et al. Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice1 , 2003, Plant Physiology.
[11] H. Hirochika,et al. Organ-specific alternative transcripts of KNOX family class 2 homeobox genes of rice. , 2002, Gene.
[12] Sandrine Balzergue,et al. T‐DNA integration into the Arabidopsis genome depends on sequences of pre‐insertion sites , 2002, EMBO reports.
[13] S. Toki,et al. Cloning and expression of five myb-related genes from rice seed. , 1997, Gene.
[14] Srinivasan Ramachandran,et al. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. , 2004, The Plant journal : for cell and molecular biology.
[15] P. Ouwerkerk,et al. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics , 2003, Theoretical and Applied Genetics.
[16] P. Ouwerkerk,et al. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis , 2004, Plant Molecular Biology.
[17] Jia Liu,et al. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists , 2003, Nucleic Acids Res..
[18] N. Fedoroff,et al. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. , 1996, The Plant journal : for cell and molecular biology.
[19] M. Lorieux,et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy , 2003, Theoretical and Applied Genetics.
[20] M. Matsuoka,et al. Auxin response factor family in rice. , 2001, Genes & genetic systems.
[21] P. Christou,et al. An Efficient Rice Transformation System Utilizing Mature Seed-derived Explants and a Portable, Inexpensive Particle Bombardment Device , 1998, Transgenic Research.
[22] R. Twyman,et al. Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice , 2004, Molecular Breeding.
[23] J. Kawai,et al. Collection, Mapping, and Annotation of Over 28,000 cDNA Clones from japonica Rice , 2003, Science.
[24] A. Meijer,et al. HD-Zip proteins of families I and II from rice: interactions and functional properties , 2000, Molecular and General Genetics MGG.
[25] A. Kohli,et al. Tagged Transcriptome Display (TTD) in indica rice using Ac transposition , 2001, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.
[26] H. Leung,et al. Rice Mutant Resources for Gene Discovery , 2004, Plant Molecular Biology.
[27] M Caboche,et al. Improved PCR-walking for large-scale isolation of plant T-DNA borders. , 2001, BioTechniques.
[28] A. Meijer,et al. Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis , 2004, Plant Molecular Biology.
[29] A. Meijer,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice , 2003, Theoretical and Applied Genetics.
[30] M. Nishiyama,et al. Characterization of an operon encoding succinyl-CoA synthetase and malate dehydrogenase from Thermus flavus AT-62 and its expression in Escherichia coli , 1991, Molecular and General Genetics MGG.
[31] G. Droc,et al. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. , 2004, The Plant journal : for cell and molecular biology.
[32] A. Kohli,et al. Transposon insertional mutagenesis in rice. , 2001, Plant physiology.