On the binomial decomposition of OWA functions, the 3-additive case in n dimensions

In the context of the binomial decomposition of OWA functions, we investigate the parametric constraints associated with the 3-additive case in n dimensions. The resulting feasible region in two coefficients is a convex polygon with n vertices and n edges, and is strictly increasing in the dimension n. The orness of the OWA functions within the feasible region is linear in the two coefficients, and the vertices associated with maximum and minimum orness are identified.

[1]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[2]  Serge-Christophe Kolm,et al.  Unequal inequalities. I , 1976 .

[3]  Udo Ebert,et al.  Size and distribution of incomes as determinants of social welfare , 1987 .

[4]  M. Yaari,et al.  A controversial proposal concerning inequality measurement , 1988 .

[5]  D. Denneberg Non-additive measure and integral , 1994 .

[6]  Michel Grabisch,et al.  Alternative Representations of Discrete Fuzzy Measures for Decision Making , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[8]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[9]  Charles Blackorby,et al.  A New Procedure for the Measurement of Inequality within and among Population Subgroups , 1981 .

[10]  M. Grabisch,et al.  A representation of preferences by the Choquet integral with respect to a 2-additive capacity , 2011 .

[11]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..

[12]  B. Baets,et al.  A decomposition of k -additive choquet and k -maxitive sugeno integrals , 2001 .

[13]  Bernard De Baets,et al.  Aggregation Operators Defined by k-Order Additive/Maxitive Fuzzy Measures , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Itzhak Gilboa,et al.  Canonical Representation of Set Functions , 1995, Math. Oper. Res..

[15]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[16]  Charles Blackorby,et al.  A Theoretical Treatment of Indices of Absolute Inequality , 1980 .

[17]  Amartya Sen,et al.  Ethical Measurement of Inequality: Some Difficulties , 1978 .

[18]  Charles Blackorby,et al.  Measures of relative equality and their meaning in terms of social welfare , 1978 .

[19]  Gábor J. Székely,et al.  Integer valued means , 2014 .

[20]  Christophe Labreuche,et al.  To : Fuzzy Sets and Systems , 2010 .

[21]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[22]  J. Quiggin Generalized expected utility theory : the rank-dependent model , 1994 .

[23]  U. Ebert Measurement of inequality: An attempt at unification and generalization , 1988 .

[24]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[25]  Michel Grabisch,et al.  Axiomatic structure of k-additive capacities , 2005, Math. Soc. Sci..

[26]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[27]  Farhad Mehran,et al.  Linear Measures of Income Inequality , 1976 .

[28]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[29]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[30]  Charles Blackorby,et al.  Ethical Social Index Numbers and the Measurement of Effective Tax-Benefit Progressivity , 1984 .

[31]  M. Sugeno,et al.  Some quantities represented by the Choquet integral , 1993 .

[32]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[33]  A Decomposition of k-Additive Choquet and k-Maxitive Sugeno Integrals , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  S. Kolm The Optimal Production of Social Justice , 1969 .

[35]  Alain Chateauneuf,et al.  Modeling attitudes towards uncertainty and risk through the use of choquet integral , 1994, Ann. Oper. Res..

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[38]  John A. Weymark,et al.  GENERALIZED GIN 1 INEQUALITY INDICES , 2001 .

[39]  Matthias Ehrgott,et al.  Multiple Criteria Decision Analysis , 2016 .

[40]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[41]  Janusz Kacprzyk,et al.  Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice , 2011, Studies in Fuzziness and Soft Computing.

[42]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[43]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[44]  I. Gilboa,et al.  Linear Measures, the Gini Index, and The Income-Equality Trade-off , 1994 .

[45]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[46]  David Donaldson,et al.  Ethical Indices for the Measurement of Poverty , 1980 .

[47]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[48]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[49]  D. Schmeidler Integral representation without additivity , 1986 .

[50]  F. Bourguignon On the Measurement of Inequality , 2003 .

[51]  G. Choquet Theory of capacities , 1954 .

[52]  Ricardo Alberto Marques Pereira,et al.  The binomial Gini inequality indices and the binomial decomposition of welfare functions , 2014, Fuzzy Sets Syst..

[53]  John A. Weymark,et al.  Ethically flexible gini indices for income distributions in the continuum , 1983 .

[54]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[55]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[56]  Thibault Gajdos,et al.  Measuring Inequalities without Linearity in Envy: Choquet Integrals for Symmetric Capacities , 2002, J. Econ. Theory.

[57]  John A. Weymark,et al.  A single-parameter generalization of the Gini indices of inequality , 1980 .