Intersection theory on the moduli space of curves and the matrix airy function

We show that two natural approaches to quantum gravity coincide. This identity is nontrivial and relies on the equivalence of each approach to KdV equations. We also investigate related mathematical problems.

[1]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[2]  A. Mironov,et al.  Unification of all string models with c<1 in the framework of generalized Kontsevich model , 1991 .

[3]  Robert C. Penner,et al.  Perturbative series and the moduli space of Riemann surfaces , 1988 .

[4]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[5]  R. Penner The decorated Teichmüller space of punctured surfaces , 1987 .

[6]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[7]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[8]  E. Witten The N matrix model and gauged WZW models , 1992 .

[9]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[10]  John Harer,et al.  The cohomology of the moduli space of curves , 1988 .

[11]  Michael R. Douglas,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[12]  B. Zwiebach How covariant closed string theory solves a minimal area problem , 1991 .

[13]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[14]  C. Itzykson,et al.  Matrix integration and combinatorics of modular groups , 1990 .

[15]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[16]  M. Kontsevich Intersection theory on the moduli space of curves , 1991 .

[17]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[18]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[19]  V. Kac,et al.  Geometric interpretation of the partition function of 2D gravity , 1991 .