Model-Based Polarimetric Decomposition With Higher Order Statistics

This letter presents a new general framework for solving polarimetric target decompositions that extends them to use more statistical information and include radar texture models. Polarimetric target decomposition methods generally have more physical parameters than equations and are, thus, underdetermined and have no unique solution. The common approach to solve them is to make certain assumptions, thus fixing some parameters, allowing the other parameters to be solved freely. This letter explains how to obtain additional equations from several statistical moments to find unique solutions and to address the issue of textured product models. The current work extends our previous conference works <xref ref-type="bibr" rid="ref1">[1]</xref>–<xref ref-type="bibr" rid="ref2"/><xref ref-type="bibr" rid="ref3">[3]</xref>. Preliminary results are demonstrated for a well-known real polarimetric synthetic aperture radar scene for the three-component Freeman–Durden decomposition.

[1]  Anthony P. Doulgeris,et al.  Can High-Order Statistics Add Information in Model-Based Polarimetric Decompositions? , 2015 .

[2]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Jakob van Zyl Synthetic Aperture Radar Polarimetry , 2011 .

[4]  Thomas L. Ainsworth,et al.  Model-Based Polsar Decompositions: Virtues and Vices , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[5]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[6]  Jakob J. van Zyl,et al.  An Optimal Nonnegative Eigenvalue Decomposition for the Freeman and Durden Three-Component Scattering Model , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Gabriel Vasile,et al.  Estimation and segmentation in non-Gaussian POLSAR clutter by SIRV stochastic processes , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Torbjørn Eltoft,et al.  A Multitexture Model for Multilook Polarimetric Synthetic Aperture Radar Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Torbjørn Eltoft,et al.  Aspects of model-based decompositions in radar polarimetry , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[11]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[12]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  Anthony P. Doulgeris,et al.  Scale Mixture of Gaussians Modelling of Polarimetric SAR Data , 2006 .

[14]  Anthony P. Doulgeris,et al.  An empirical optimisation strategy for Model-based Polarimetric Target Decomposition , 2016 .

[15]  Torbjørn Eltoft,et al.  Automated Non-Gaussian Clustering of Polarimetric Synthetic Aperture Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .