Interplay of quantum and thermal fluctuations in a frustrated magnet

We demonstrate the presence of an extended critical phase in the transverse field Ising magnet on the triangular lattice, in a regime where both thermal and quantum fluctuations are important. We ...

[1]  R. Houtappel Order-disorder in hexagonal lattices , 1950 .

[2]  G. Aeppli,et al.  Tunable quantum tunnelling of magnetic domain walls , 2001, Nature.

[3]  S. Fujiki,et al.  XY-Nature of the Fully Frustrated Ising Model on the Triangular Lattice , 1986 .

[4]  Jorge V. José,et al.  Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model , 1977 .

[5]  Masuo Suzuki,et al.  Relationship among Exactly Soluble Models of Critical Phenomena. I ---2D Ising Model, Dimer Problem and the Generalized XY-Model--- , 1971 .

[6]  Lerner,et al.  Ionization of helium by a short pulse of radiation: A Fermi molecular-dynamics calculation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  Landau,et al.  Critical behavior of the six-state clock model in two dimensions. , 1986, Physical review. B, Condensed matter.

[8]  J. Stephenson,et al.  Ising‐Model Spin Correlations on the Triangular Lattice. III. Isotropic Antiferromagnetic Lattice , 1970 .

[9]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[10]  Magnetic phase diagram of the ferromagnetically stacked triangular Ising antiferromagnet , 1994, cond-mat/9411095.

[11]  S. M. Girvin,et al.  Continuous quantum phase transitions , 1997 .

[12]  I. S. Tupitsyn,et al.  Exact quantum Monte Carlo process for the statistics of discrete systems , 1996, cond-mat/9612091.

[13]  Yutaka Okabe,et al.  Probability-Changing Cluster Algorithm for Two-Dimensional XY and Clock Models , 2002 .

[14]  S. Fujiki,et al.  Monte Carlo Study of the Ferromagnetic Six-State Clock Model on the Triangular Lattice , 1995 .

[15]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .

[16]  R. Netz,et al.  Monte Carlo mean-field theory and frustrated systems in two and three dimensions. , 1991, Physical review letters.

[17]  I. S. Tupitsyn,et al.  Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems , 1997, cond-mat/9703200.

[18]  B. B. Beard,et al.  Simulations of Discrete Quantum Systems in Continuous Euclidean Time. , 1996 .

[19]  Critical exponents of the N-vector model , 1998, cond-mat/9803240.

[20]  Henley,et al.  Ordering due to disorder in a frustrated vector antiferromagnet. , 1989, Physical review letters.

[21]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[22]  H. Trotter On the product of semi-groups of operators , 1959 .

[23]  A. Yamagata,et al.  Phase transitions of the 6-clock model in two dimensions , 1991 .

[24]  J. Villain,et al.  Order as an effect of disorder , 1980 .

[25]  Magnets with strong geometric frustration , 2001 .

[26]  O. Petrenko,et al.  Review/Synthèse: Triangular antiferromagnets , 1997 .

[27]  A. Nihat Berker,et al.  Orderings of a stacked frustrated triangular system in three dimensions , 1984 .

[28]  Ordered phase and scaling in Z n models and the three-state antiferromagnetic Potts model in three dimensions , 1999, cond-mat/9907388.

[29]  NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM CRITICAL POINTS , 1997, cond-mat/9705206.

[30]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[31]  R. Moessner,et al.  Ising models of quantum frustration , 2000, cond-mat/0011250.

[32]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[33]  Chandra,et al.  Two-dimensional periodic frustrated ising models in a transverse field , 2000, Physical review letters.

[34]  S. Miyashita,et al.  Ordered phase and phase transitions in the three-dimensional generalized six-state clock model , 2002, cond-mat/0207665.