Distinct and flexible rates of online control

[1]  James L. Lyons,et al.  The multiple process model of goal-directed reaching revisited , 2017, Neuroscience & Biobehavioral Reviews.

[2]  Luc Tremblay,et al.  Quantifying online visuomotor feedback utilization in the frequency domain , 2016, Behavior research methods.

[3]  Luc Tremblay,et al.  An optimal velocity for online limb-target regulation processes? , 2016, Experimental Brain Research.

[4]  Sae Franklin,et al.  Temporal Evolution of Spatial Computations for Visuomotor Control , 2016, The Journal of Neuroscience.

[5]  S. Scott,et al.  Feedback control during voluntary motor actions , 2015, Current Opinion in Neurobiology.

[6]  R. Caminiti,et al.  Visually-guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex , 2015, Vision Research.

[7]  Pratik K. Mutha,et al.  The influence of visual target information on the online control of movements , 2015, Vision Research.

[8]  Jason Friedman,et al.  Corrective jitter motion shows similar individual frequencies for the arm and the finger , 2015, Experimental Brain Research.

[9]  龚启勇,et al.  Task force urges CT lung cancer screening for people at high risk , 2014 .

[10]  D. Wolpert,et al.  The Temporal Evolution of Feedback Gains Rapidly Update to Task Demands , 2013, The Journal of Neuroscience.

[11]  Arend W A Van Gemmert,et al.  Movement trajectory smoothness is not associated with the endpoint accuracy of rapid multi-joint arm movements in young and older adults. , 2013, Acta psychologica.

[12]  Luc Tremblay,et al.  The Utility of Vision During Action: Multiple Visuomotor Processes? , 2013, Journal of motor behavior.

[13]  Manu Chhabra,et al.  Flexible, Task-Dependent Use of Sensory Feedback to Control Hand Movements , 2011, The Journal of Neuroscience.

[14]  Julien Brière,et al.  Automaticity of online control processes in manual aiming. , 2010, Journal of vision.

[15]  Ian M Franks,et al.  Movement duration does not affect automatic online control. , 2010, Human movement science.

[16]  James L. Lyons,et al.  Goal-directed aiming: two components but multiple processes. , 2010, Psychological bulletin.

[17]  B. Berret,et al.  Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement , 2010, Neuroscience.

[18]  John J. B. Allen,et al.  Neurophysiological evidence for the influence of past experience on figure-ground perception. , 2010, Journal of vision.

[19]  Luc Proteau,et al.  Evidence for Continuous Processing of Visual Information in a Manual Video-Aiming Task , 2009, Journal of motor behavior.

[20]  Eli Brenner,et al.  The latency for correcting a movement depends on the visual attribute that defines the target , 2008, Experimental Brain Research.

[21]  Rieko Osu,et al.  Conflicting Visual and Proprioceptive Reflex Responses During Reaching Movements , 2007, ICONIP.

[22]  E. Todorov,et al.  Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal Feedback Control , 2007, The Journal of Neuroscience.

[23]  Gavin P. Lawrence,et al.  Inferring online and offline processing of visual feedback in target-directed movements from kinematic data , 2006, Neuroscience & Biobehavioral Reviews.

[24]  Gopal Santhanam,et al.  Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach. , 2006, Journal of neurophysiology.

[25]  D. Elliott,et al.  The influence of advance information about target location and visual feedback on movement planning and execution. , 2006, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[26]  Ian M Franks,et al.  Determinants of Offline Processing of Visual Information for the Control of Reaching Movements , 2006, Journal of motor behavior.

[27]  Fabrice R. Sarlegna,et al.  Impairment of online control of reaching movements with aging: A double-step study , 2006, Neuroscience Letters.

[28]  Robert L. Sainburg,et al.  Differential influence of vision and proprioception on control of movement distance , 2006, Experimental Brain Research.

[29]  R. Miall,et al.  Adaptation to visual feedback delays in manual tracking: evidence against the Smith Predictor model of human visually guided action , 2006, Experimental Brain Research.

[30]  M. Heath Role of limb and target vision in the online control of memory-guided reaches. , 2005, Motor control.

[31]  David C. Knill,et al.  Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements , 2005, Experimental Brain Research.

[32]  K. Newell,et al.  Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production , 2005, Perception & psychophysics.

[33]  T. I. Katsaounis Exploring Multivariate Data with the Forward Search , 2004, Technometrics.

[34]  Luc Tremblay,et al.  Learning to Optimize Speed, Accuracy, and Energy Expenditure: A Framework for Understanding Speed-Accuracy Relations in Goal-Directed Aiming , 2004, Journal of motor behavior.

[35]  R. J. van Beers,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[36]  J. Algina,et al.  Generalized eta and omega squared statistics: measures of effect size for some common research designs. , 2003, Psychological methods.

[37]  J. Saunders,et al.  Humans use continuous visual feedback from the hand to control fast reaching movements , 2003, Experimental Brain Research.

[38]  J. Vercher,et al.  Target and hand position information in the online control of goal-directed arm movements , 2003, Experimental Brain Research.

[39]  Gavin P. Lawrence,et al.  Online versus offline processing of visual feedback in the control of movement amplitude. , 2003, Acta psychologica.

[40]  James L. Lyons,et al.  Optimal Control Strategies Under Different Feedback Schedules: Kinematic Evidence , 2002, Journal of motor behavior.

[41]  Scott T. Grafton,et al.  Forward modeling allows feedback control for fast reaching movements , 2000, Trends in Cognitive Sciences.

[42]  E. Brenner,et al.  Fast Responses of the Human Hand to Changes in Target Position. , 1997, Journal of motor behavior.

[43]  R Plamondon,et al.  Speed/accuracy trade-offs in target-directed movements , 1997, Behavioral and Brain Sciences.

[44]  R. Miall,et al.  Task-dependent changes in visual feedback control: a frequency analysis of human manual tracking. , 1996, Journal of motor behavior.

[45]  Michel Desmurget,et al.  The effect of viewing the static hand prior to movement onset on pointing kinematics and variability , 1994, Experimental Brain Research.

[46]  Romeo Chua,et al.  Discrete vs. continuous visual control of manual aiming , 1991 .

[47]  I M Franks,et al.  Preprogramming vs. on-line control in simple movement sequences. , 1991, Acta psychologica.

[48]  T. Flash,et al.  Arm Trajectory Modifications During Reaching Towards Visual Targets , 1991, Journal of Cognitive Neuroscience.

[49]  D. Elliott,et al.  The contribution of vision to asymmetries in manual aiming , 1990, Neuropsychologia.

[50]  E. Pierrot-Deseilligny,et al.  Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. , 1989, The Journal of physiology.

[51]  Paul Milgram,et al.  A spectacle-mounted liquid-crystal tachistoscope , 1987 .

[52]  D. Elliott,et al.  The Influence of Premovement Visual Information on Manual Aiming , 1987, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[53]  C. Ghez,et al.  Trajectory control in targeted force impulses , 1987, Experimental Brain Research.

[54]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  R. Schmidt,et al.  Knowledge of results and motor learning: a review and critical reappraisal. , 1984, Psychological bulletin.

[56]  Lorraine G. Kisselburgh,et al.  Rapid visual feedback processing in single-aiming movements. , 1983, Journal of motor behavior.

[57]  E. R. Crossman,et al.  Feedback Control of Hand-Movement and Fitts' Law , 1983, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[58]  J. T. Massey,et al.  Interruption of motor cortical discharge subserving aimed arm movements , 1983, Experimental Brain Research.

[59]  S. T. Klapp,et al.  Relation between programming time and duration of the response being programmed. , 1976, Journal of experimental psychology. Human perception and performance.

[60]  C. I. Howarth,et al.  The relationship between speed and accuracy of movement aimed at a target , 1971 .

[61]  L. Stark,et al.  Sampling or intermittency in hand control system dynamics. , 1968, Biophysical journal.

[62]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[63]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[64]  Gerome A Manson,et al.  Effects of robotic guidance on sensorimotor control: planning vs. online control? , 2014, NeuroRehabilitation.

[65]  Robert B. Randall,et al.  Spectral Analysis and Correlation , 2008 .

[66]  Matthew Heath,et al.  The proximity of visual landmarks impacts reaching performance. , 2007, Spatial vision.

[67]  M. Goodale,et al.  Visual control of reaching movements without vision of the limb , 2004, Experimental Brain Research.

[68]  Matthew Heath,et al.  The control of memory-guided reaching movements in peripersonal space. , 2004, Motor control.

[69]  J. F. Soechting,et al.  Effect of target size on spatial and temporal characteristics of a pointing movement in man , 2004, Experimental Brain Research.

[70]  C Ghez,et al.  Trajectory control in targeted force impulses , 2004, Experimental Brain Research.

[71]  M. Goodale,et al.  Perceptual illusion and the real-time control of action. , 2003, Spatial vision.

[72]  C M Michel,et al.  Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation. , 1992, Electroencephalography and clinical neurophysiology.

[73]  Les G. Carlton,et al.  Chapter 1 Visual Processing Time and the Control of Movement , 1992 .

[74]  R. Schmidt,et al.  Utilization of Sensory Information for Motor Control , 1990 .

[75]  Lambert Schomaker,et al.  Effects of motor programming on the power spectral density function of finger and wrist movements. , 1990, Journal of experimental psychology. Human perception and performance.

[76]  R A Abrams,et al.  Optimality in human motor performance: ideal control of rapid aimed movements. , 1988, Psychological review.

[77]  M Jeannerod,et al.  Are corrections in accurate arm movements corrective? , 1986, Progress in brain research.

[78]  John F. Kalaska,et al.  Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations , 1983 .