Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries

[1]  Xingguo Qi,et al.  Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries , 2022, Nature Communications.

[2]  E. Ayerbe,et al.  Are Polymer‐Based Electrolytes Ready for High‐Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance , 2022, Advanced Energy Materials.

[3]  Liwei Chen,et al.  In situ characterization of the electrolyte|electrode interface evolution in solid-state lithium batteries , 2022, Current Opinion in Green and Sustainable Chemistry.

[4]  Wengao Zhao,et al.  A Polymerized‐Ionic‐Liquid‐Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid‐State Lithium Metal Batteries , 2022, Advanced Energy Materials.

[5]  Mingxue Tang,et al.  Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery , 2022, Nano Energy.

[6]  Qianyi Ma,et al.  The Plasticizer-Free Composite Block Copolymer Electrolytes for Ultralong Lifespan All-Solid-State Lithium-Metal Batteries , 2022, SSRN Electronic Journal.

[7]  M. Martínez-Ibañez,et al.  Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes , 2022, ACS Energy Letters.

[8]  Liquan Chen,et al.  Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites , 2022, Science advances.

[9]  Zonghai Chen,et al.  Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator , 2022, Nature communications.

[10]  Yunlong Guo,et al.  Segmental and interfacial dynamics quantitatively determine ion transport in solid polymer composite electrolytes , 2022, Journal of Applied Polymer Science.

[11]  Yong Wang,et al.  In-Situ Generation of Fluorinated Polycarbonate Copolymer Solid Electrolytes for High-voltage Li-metal batteries , 2021, Energy Storage Materials.

[12]  Dong‐Wan Kim,et al.  Mechanically Interlocked Polymer Electrolyte with Built‐In Fast Molecular Shuttles for All‐Solid‐State Lithium Batteries , 2021, Advanced Energy Materials.

[13]  Hyun‐Wook Lee,et al.  Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries , 2021, Energy Storage Materials.

[14]  J. Choi,et al.  Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries , 2021, Angewandte Chemie.

[15]  M. Kuenzel,et al.  Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries , 2021, Joule.

[16]  Yuhao Liang,et al.  Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film , 2021, Journal of Energy Chemistry.

[17]  Xiaofei Yang,et al.  Realizing Solid‐Phase Reaction in Li–S Batteries via Localized High‐Concentration Carbonate Electrolyte , 2021, Advanced Energy Materials.

[18]  Feng Li,et al.  Double ionic-electronic transfer interface layers for all solid-state lithium batteries. , 2021, Angewandte Chemie.

[19]  Xinrong Lin,et al.  Fluorinated Bifunctional Solid Polymer Electrolyte Synthesized under Visible Light for Stable Lithium Deposition and Dendrite‐Free All‐Solid‐State Batteries , 2021, Advanced Functional Materials.

[20]  Cuiling Yu,et al.  Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries , 2021 .

[21]  M. Winter,et al.  Cation‐Assisted Lithium‐Ion Transport for High‐Performance PEO‐based Ternary Solid Polymer Electrolytes , 2021, Angewandte Chemie.

[22]  M. Xiao,et al.  Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application , 2020, Advanced Functional Materials.

[23]  W. Lu,et al.  Superionic Conductors via Bulk Interfacial Conduction. , 2020, Journal of the American Chemical Society.

[24]  Hui‐Ming Cheng,et al.  Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature , 2020, Advanced Functional Materials.

[25]  J. Goodenough,et al.  Thermodynamic Understanding of Li-Dendrite Formation , 2020 .

[26]  Liquan Chen,et al.  A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery , 2020 .

[27]  C. V. Singh,et al.  Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? , 2020 .

[28]  Yujie Yang,et al.  A Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. , 2020, ACS applied materials & interfaces.

[29]  Yan Yu,et al.  A Mixed Lithium‐Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode , 2020, Advanced Functional Materials.

[30]  Guorong Chen,et al.  Polymer electrolyte with dual functional groups designed via theoretical calculation for all-solid-state lithium batteries , 2020 .

[31]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[32]  M. Armand,et al.  Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries , 2019, Joule.

[33]  Jie Xiao How lithium dendrites form in liquid batteries , 2019, Science.

[34]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[35]  R. Pathak,et al.  Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes , 2019, Energy Storage Materials.

[36]  Yantao Zhang,et al.  Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes , 2018, Joule.

[37]  Qi Chen,et al.  Functional Scanning Force Microscopy for Energy Nanodevices , 2018, Advanced materials.

[38]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[39]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[40]  John B Goodenough,et al.  Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. , 2018, Journal of the American Chemical Society.

[41]  A. Eftekhari,et al.  Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries , 2017, Scientific Reports.

[42]  F. Ding,et al.  Recent advances in solid polymer electrolytes for lithium batteries , 2017, Nano Reseach.

[43]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[44]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[45]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[46]  S. Hirano,et al.  Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries , 2016 .

[47]  Yuki Yamada,et al.  Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[48]  Wei Zhao,et al.  Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane , 2012 .

[49]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[50]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[51]  J. van Turnhout,et al.  Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling , 2002 .

[52]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[53]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .