CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

The recent inference of a carbon-rich atmosphere, with C/O ≥ 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O ≥ 1, and T 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H2O is depleted and CH4 is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of ~100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P ~ 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of ~0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H2O is condensed, the remaining gas can potentially have a C/O ~ 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.

[1]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[2]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[3]  J. Beaulieu,et al.  Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733b , 2009, 0909.4977.

[4]  Yann Alibert,et al.  Modeling the Jovian subnebula. II. Composition of regular satellite ices , 2005 .

[5]  CRITICAL PROTOPLANETARY CORE MASSES IN PROTOPLANETARY DISKS AND THE FORMATION OF SHORT-PERIOD GIANT PLANETS , 1999, astro-ph/9903310.

[6]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[7]  U. Jørgensen Dominating molecules in the photospheres of cool stars , 1994 .

[8]  Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D , 2006, astro-ph/0605563.

[9]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[10]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .

[11]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[12]  W. Irvine,et al.  Molecular Abundance Variations Among and Within Cold, Dark Molecular Clouds , 1992 .

[13]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[14]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[15]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[16]  M. Marley,et al.  Detection of Abundant Carbon Monoxide in the Brown Dwarf Gliese 229B , 1997 .

[17]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[18]  W. F. Huebner,et al.  Molecular equilibrium with condensation. [in astrophysics] , 1990 .

[19]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .

[20]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[21]  M. Tomasko,et al.  Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data , 2010 .

[22]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[23]  D. Cordier,et al.  ON THE VOLATILE ENRICHMENTS AND HEAVY ELEMENT CONTENT IN HD189733b , 2010, 1011.4168.

[24]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[25]  J. Moses,et al.  The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling , 2010, 1003.6077.

[26]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[27]  G. Marcy,et al.  CARBON AND OXYGEN IN NEARBY STARS: KEYS TO PROTOPLANETARY DISK CHEMISTRY , 2011, 1106.5449.

[28]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[29]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[30]  J. Beaulieu,et al.  Composition of Ices in Low-Mass Extrasolar Planets , 2008, 0804.0406.

[31]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[32]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[33]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[34]  S. Seager,et al.  HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b , 2010, 1004.5121.

[35]  J. Lunine,et al.  Sulfur chemistry with time-varying oxygen abundance during Solar System formation , 2005 .

[36]  J. Moses,et al.  QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS , 2011, 1106.3525.

[37]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[38]  Drake Deming,et al.  STUDYING THE ATMOSPHERE OF THE EXOPLANET HAT-P-7b VIA SECONDARY ECLIPSE MEASUREMENTS WITH EPOXI, SPITZER, AND KEPLER , 2009, 0912.2132.

[39]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[40]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[41]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[42]  U. Jørgensen Molecules in the Stellar Environment , 2013 .

[43]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[44]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[45]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[46]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[47]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[48]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[49]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[50]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[51]  Alexander G. G. M. Tielens,et al.  An Inventory of Interstellar Ices toward the Embedded Protostar W33A , 2000 .

[52]  R. Nelson,et al.  The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems , 2007, 0707.2674.

[53]  Sushil K. Atreya,et al.  Atmospheric moons Galileo would have loved , 2010, Proceedings of the International Astronomical Union.

[54]  L. Hebb,et al.  A DETAILED SPECTROPOLARIMETRIC ANALYSIS OF THE PLANET-HOSTING STAR WASP-12, , 2010, 1007.3082.

[55]  Daniel Gautier,et al.  Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula , 2004 .

[56]  J. Pinto,et al.  Estimation of the reaction rate for the formation of CH3O from H + H2CO: implications for chemistry in the Solar System. , 1988, Icarus.

[57]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[58]  R. Nelson,et al.  Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration , 2005, astro-ph/0507180.

[59]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[60]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[61]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[62]  L. J. Richardson,et al.  On the Dayside Thermal Emission of Hot Jupiters , 2005 .

[63]  Extrasolar Carbon Planets , 2005, astro-ph/0504214.

[64]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[65]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[66]  Joseph L. Hora,et al.  A ccepted forpublication in The A strophysicalJournal D etection of T herm alE m ission of X O -2b: E vidence for a W eak Tem perature Inversion , 2022 .

[67]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[68]  P. Ehrenfreund,et al.  ISO observations of interstellar ices: Implications for the pristinity of comets , 2000 .

[69]  Yann Alibert,et al.  DETERMINATION OF THE MINIMUM MASSES OF HEAVY ELEMENTS IN THE ENVELOPES OF JUPITER AND SATURN , 2008, 0812.2441.

[70]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[71]  W. Demore,et al.  Photochemistry of Planetary Atmospheres , 1998 .

[72]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[73]  R. Prinn,et al.  Carbon monoxide on jupiter and implications for atmospheric convection. , 1977, Science.