Lean fuel detection with nanosecond-gated laser-induced breakdown spectroscopy

[1]  Will O. Landsberg,et al.  Dual/scram-mode combustion limits of ethylene and surrogate endothermically-cracked hydrocarbon fuels at Mach 8 equivalent high-enthalpy conditions , 2020 .

[2]  J. Freund,et al.  Hydrodynamic ejection caused by laser-induced optical breakdown , 2020, Journal of Fluid Mechanics.

[3]  J. Freund,et al.  Particle Image Velocimetry of a Nano-Second Laser Induced Breakdown in Air , 2020 .

[4]  D. Peterson,et al.  Reacting Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations of a Mach 3 Cavity , 2019, AIAA Propulsion and Energy 2019 Forum.

[5]  Hua Li,et al.  Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soils with Generalized LIBS Spectra , 2019, Scientific Reports.

[6]  D. K. Walters,et al.  Dynamic Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation of a Supersonic Cavity: Chemistry Effects , 2019, Journal of Propulsion and Power.

[7]  Pavel Pořízka,et al.  On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review , 2018, Spectrochimica Acta Part B: Atomic Spectroscopy.

[8]  Michael R. Rhoby,et al.  Infrared Hyperspectral Imaging Diagnostics of Fueling Strategy for Scramjets , 2018, Journal of Propulsion and Power.

[9]  C. Fureby,et al.  Small Skeletal Kinetic Reaction Mechanism for Ethylene–Air Combustion , 2017 .

[10]  D. Peterson,et al.  Hybrid Reynolds-Averaged and Large-Eddy Simulations of Combustion in a Supersonic Cavity Flameholder , 2017 .

[11]  C. Carter,et al.  Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching , 2017 .

[12]  C. Carter,et al.  Establishing the Controlling Parameters of Ignition in High-Speed Flow , 2016 .

[13]  C. Carter,et al.  Direct spectrum matching of laser-induced breakdown for concentration and gas density measurements in turbulent reacting flows , 2015 .

[14]  David M. Peterson,et al.  Modeling of Turbulence in a Supersonic Wall Cavity , 2015 .

[15]  S. S. Harilal,et al.  Lifecycle of laser-produced air sparks , 2015 .

[16]  David M. Peterson,et al.  Simulating Turbulence and Mixing in Supersonic Combustors Using Hybrid RANS/LES , 2015 .

[17]  C. Carter,et al.  Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown , 2015 .

[18]  Ronald K. Hanson,et al.  Hypersonic Scramjet Testing via Diode Laser Absorption in a Reflected Shock Tunnel , 2014 .

[19]  H. Curran,et al.  A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels , 2013 .

[20]  C. Carter,et al.  Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma , 2013 .

[21]  Klaus Hannemann,et al.  Investigation of Unsteady/Quasi-Steady Scramjet Behavior using High-Speed Visualization Techniques , 2012 .

[22]  Reinhard Noll,et al.  Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications , 2012 .

[23]  C. Law,et al.  Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow , 2012 .

[24]  G. Candler,et al.  Supersonic combustor fuel injection simulations using a hybrid RANS/LES approach , 2010 .

[25]  David W. Hahn,et al.  The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects☆ , 2007 .

[26]  Leon J. Radziemski,et al.  Handbook of Laser-Induced Breakdown Spectroscopy , 2006 .

[27]  S. Buckley,et al.  Measurements of hydrocarbons using laser-induced breakdown spectroscopy , 2006 .

[28]  G. Elliott,et al.  The effect of ambient pressure on laser-induced plasmas in air , 2006 .

[29]  Israel Schechter,et al.  Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications , 2006 .

[30]  G. Elliott,et al.  Temporal and Spatial Evolution of a Laser Spark in Air , 2005 .

[31]  Campbell D. Carter,et al.  Mixing and combustion studies using cavity-based flameholders in a supersonic flow , 2004 .

[32]  D. Hahn,et al.  Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy , 2004 .

[33]  Y. Ikeda,et al.  Spatial characterization of laser-induced sparks in air , 2004 .

[34]  D. Hahn,et al.  Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy , 2002 .

[35]  Gregory S Elliott,et al.  Energy deposition in supersonic flows , 2001 .

[36]  Tran X. Phuoc,et al.  Laser-induced spark ignition of CH4/air mixtures , 1999 .

[37]  D. Crosley,et al.  In uence of ambient conditions on the laser air spark , 1996, Laser Applications to Chemical, Security and Environmental Analysis.

[38]  H. Griem Principles of Plasma Spectroscopy , 1997 .