The effect of TRISO particle size on its failure probabilities for UN and U3Si2 fuel materials

[1]  B. Rajeswari,et al.  ICP-OES based methodology for determination of critical elements in U3Si2 matrix , 2022, Journal of Radioanalytical and Nuclear Chemistry.

[2]  K. Terrani,et al.  Uranium nitride tristructural-isotropic fuel particle , 2020 .

[3]  A. W. Harto,et al.  Neutronic analysis of fuel assembly design in Small-PWR using uranium mononitride fully ceramic micro-encapsulated fuel using SCALE and Serpent codes , 2019, Nuclear Engineering and Technology.

[4]  B. Collin,et al.  Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code , 2014 .

[5]  M. Kazimi,et al.  Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP , 2012 .

[6]  Gregory K. Miller,et al.  The challenges associated with high burnup, high temperature and accelerated irradiation for TRISO-coated particle fuel , 2007 .

[7]  R. Thetford,et al.  The chemistry and physics of modelling nitride fuels for transmutation , 2003 .

[8]  A. Koster,et al.  PBMR design for the future , 2003 .

[9]  K. Richter,et al.  Investigation of the operational limits of uranium-plutonium nitride fuels , 1991 .

[10]  Hans Huschka,et al.  Status of qualification of high-temperature reactor fuel element spheres , 1985 .

[11]  B. M. Ma,et al.  Nuclear Reactor Materials and Applications , 1982 .

[12]  J. Routbort,et al.  Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels — a review , 1975 .

[13]  Y. Zou,et al.  Performance of Coated Particle Fuel in a Thorium Molten Salt Reactor with Solid Fuel , 2014 .

[14]  Liang Tongxiang Fabrication of Spherical Fuel Element for 10 MW High Temperature Gas-cooled Reactor , 2003 .

[15]  H. Nabielek,et al.  The Behavior of HTR Fuel Under Irradiation , 1983 .

[16]  K. Bongartz Status of the fuel stress and failure rate calculations at KFA , 1980 .