An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders

[1]  V. Verkhusha,et al.  Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy , 2018, Nature Methods.

[2]  Haiyuan Yu,et al.  Interactome INSIDER: a structural interactome browser for genomic studies , 2017, Nature Methods.

[3]  Huatai Xu,et al.  Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders , 2017, Cell Research.

[4]  Vsevolod Katritch,et al.  An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio , 2017, Nature Communications.

[5]  Ronald Cohn,et al.  RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes. , 2017, American journal of human genetics.

[6]  Bradley P. Coe,et al.  Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains , 2017, Nature Neuroscience.

[7]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[8]  Xing-Ming Zhao,et al.  OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines , 2016, Nucleic Acids Res..

[9]  Raphael A. Bernier,et al.  denovo-db: a compendium of human de novo variants , 2016, Nucleic Acids Res..

[10]  D. Baralle,et al.  Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly , 2016, Journal of Medical Genetics.

[11]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[12]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[13]  Jakob Grove,et al.  Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population , 2015, Nature Genetics.

[14]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[15]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[16]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[17]  Stephan J. Sanders,et al.  Genotype to phenotype relationships in autism spectrum disorders , 2014, Nature Neuroscience.

[18]  Tomas W. Fitzgerald,et al.  Large-scale discovery of novel genetic causes of developmental disorders , 2014, Nature.

[19]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[20]  Matthew Mort,et al.  A Massively Parallel Pipeline to Clone DNA Variants and Examine Molecular Phenotypes of Human Disease Mutations , 2014, PLoS genetics.

[21]  Bridget E. Begg,et al.  A Proteome-Scale Map of the Human Interactome Network , 2014, Cell.

[22]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[23]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[24]  Kathryn Roeder,et al.  De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. , 2014, Cell reports.

[25]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[26]  L. Vissers,et al.  Genome sequencing identifies major causes of severe intellectual disability , 2014, Nature.

[27]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[28]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[29]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[30]  Michael Wigler,et al.  The role of de novo mutations in the genetics of autism spectrum disorders , 2014, Nature Reviews Genetics.

[31]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[32]  Haiyuan Yu,et al.  INstruct: a database of high-quality 3D structurally resolved protein interactome networks , 2013, Bioinform..

[33]  L. Vissers,et al.  Point mutations as a source of de novo genetic disease. , 2013, Current opinion in genetics & development.

[34]  Murim Choi,et al.  De novo mutations in histone modifying genes in congenital heart disease , 2013, Nature.

[35]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[36]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[37]  Bernie Devlin,et al.  Genetic architecture in autism spectrum disorder. , 2012, Current opinion in genetics & development.

[38]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[39]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[40]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[41]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[42]  Eric P Hoffman,et al.  Genomics, intellectual disability, and autism. , 2012, The New England journal of medicine.

[43]  Haiyuan Yu,et al.  Three-dimensional reconstruction of protein networks provides insight into human genetic disease , 2012, Nature Biotechnology.

[44]  Haiyuan Yu,et al.  HINT: High-quality protein interactomes and their applications in understanding human disease , 2012, BMC Systems Biology.

[45]  Thomas M Green,et al.  A public genome-scale lentiviral expression library of human ORFs , 2011, Nature Methods.

[46]  Boris Yamrom,et al.  Rare De Novo and Transmitted Copy-Number Variation in Autistic Spectrum Disorders , 2011, Neuron.

[47]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[48]  Fabian J. Theis,et al.  MIPS: curated databases and comprehensive secondary data resources in 2010 , 2010, Nucleic Acids Res..

[49]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[50]  Ian M. Donaldson,et al.  iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence , 2010, Database J. Biol. Databases Curation.

[51]  Insuk Lee,et al.  Characterising and Predicting Haploinsufficiency in the Human Genome , 2010, PLoS genetics.

[52]  H. Ropers Genetics of early onset cognitive impairment. , 2010, Annual review of genomics and human genetics.

[53]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[54]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[55]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[56]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[57]  A. Barabasi,et al.  An empirical framework for binary interactome mapping , 2008, Nature Methods.

[58]  Sharmila Banerjee-Basu,et al.  AutDB: a gene reference resource for autism research , 2008, Nucleic Acids Res..

[59]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[60]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[61]  D. Vitkup,et al.  Network properties of genes harboring inherited disease mutations , 2008, Proceedings of the National Academy of Sciences.

[62]  B. Bruneau The developmental genetics of congenital heart disease , 2008, Nature.

[63]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[64]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[65]  N. C. Schanen,et al.  Epigenetics of autism spectrum disorders. , 2006, Human molecular genetics.

[66]  Yongjin Li,et al.  Discovering disease-genes by topological features in human protein-protein interaction network , 2006, Bioinform..

[67]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[68]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[69]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[70]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[71]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[72]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[73]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..