Scaling of microwave slot antenna (SLAN): a concept for efficient plasma generation

In slot antenna (SLAN) type plasma sources the microwave power is coupled from an annual waveguide (ring cavity) through equidistantly positioned resonant coupling slots into the plasma chamber made of quartz. The symmetrical power distribution and the surface wave at the plasma - quartz interface allows large-area plasma generation. Three plasma sources with 4, 16 and 66 cm quartz tube diameter (ring cavities with 4, 10 and 30 coupling slots respectively) are compared. The ECR versions of them are also considered. The ignition performance and operation pressure range are presented. Plasma parameters (ion concentration, electron temperature) and their radial and axial distributions are shown. The computation tools used for the design of sources with different dimensions are described. The scaling rules and limitations of up-scaling are discussed. These are plasma inhomogeneity due to diffusion and recombination processes, thermal load of the microwave components, and thermal and mechanical load of the plasma chamber and substrates. The up-scaled discharge architecture for remote processing, suppressing the direct microwave heating and ion bombardment is proposed.

[1]  R. Wilhelm,et al.  Elongated microwave electron cyclotron resonance heating plasma source , 1990 .

[2]  M. Chaker,et al.  Large‐diameter plasma columns produced by surface waves at radio and microwave frequencies , 1985 .

[3]  K. Ono,et al.  Multicusp Electron-Cyclotron-Resonance Plasma Source Working with Microwaves Radially Injected through an Annular Slit , 1994 .

[4]  L. Talbot,et al.  Collisionless Electrostatic Single-Probe and Double-Probe Measurements , 1970 .

[5]  D. Korzec,et al.  Control of plasma parameters in a cylinder symmetrical capacitively coupled rf ion source by use of a magnetic field , 1989 .

[6]  Thomas Weiland,et al.  On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .

[7]  A. Trivelpiece Slow wave propagation in plasma waveguides , 1958 .

[8]  S. Iizuka,et al.  Electron Cyclotron Resonance Devices with Permanent Magnets for Production of Large-Diameter Uniform Plasmas , 1994 .

[9]  R. Nemanich,et al.  Characterization of a slot antenna microwave plasma source for hydrogen plasma cleaning , 1995 .

[10]  Michel Moisan,et al.  Plasma sources based on the propagation of electromagnetic surface waves , 1991 .

[11]  R. Pantel,et al.  Axial electron density and wave power distributions along a plasma column sustained by the propagation of a surface microwave , 1980 .

[12]  Z. Zakrzewski,et al.  RESEARCH NOTES: Effect of collisions on positive ion collection by a cylindrical Langmuir probe , 1974 .

[13]  Jeffrey Hopwood,et al.  Review of inductively coupled plasmas for plasma processing , 1992 .

[14]  Y. Okuno,et al.  Production of large diameter microwave plasma using an annular slot antenna , 1994 .

[15]  J. E. Eaton,et al.  Linear-array antennas and feeds , 1984 .

[16]  S. Iizuka,et al.  Uniform plasma produced by a plane slotted antenna with magnets for electron cyclotron resonance , 1993 .

[17]  M. Chaker,et al.  Tube diameter and wave frequency limitations when using the electro magnetic surface wave in the m=1 (dipolar) mode to sustain a plasma column , 1989 .

[18]  P. Leprince,et al.  Modelling of a microwave discharge created by a standing surface wave , 1992 .

[19]  Makoto Ando,et al.  Waveguide-fed parallel plate slot array antenna , 1992 .

[20]  J. Engemann,et al.  Surface wave operation mode of the slot antenna microwave plasma source SLAN , 1996 .

[21]  Y. Suetsugu,et al.  Temporal Behaviour of ECR Plasmas Produced by a Lisitano Coil , 1984 .

[22]  A. Rutscher,et al.  Das Ähnlichkeitsgesetz für quasineutrale, anisotherme Entladungssäulen , 1969 .

[23]  J. Tous,et al.  A method for the ion density estimation from the double probe data at medium and higher pressures , 1994 .

[24]  J. Asmussen Electron cyclotron resonance microwave discharges for etching and thin‐film deposition , 1989 .

[25]  H. D. Pandey,et al.  Feed optimization for the slotted line antenna for high-density plasma production , 1990 .

[26]  M. Chaker,et al.  The waveguide surfatron: a high power surface-wave launcher to sustain large-diameter dense plasma columns , 1987 .

[27]  M. Wertheimer,et al.  Comparison of microwave and lower frequency plasmas for thin film deposition and etching , 1985 .

[28]  D. Korzec,et al.  Remote and direct microwave plasma deposition of HMDSO films: comparative study , 1995 .

[29]  D. Korzec,et al.  Remote deposition of scratch resistant films by use of slot antenna microwave plasma source , 1996 .

[30]  C.I.M. Beenakker,et al.  A cavity for microwave-induced plasmas operated in helium and argon at atmospheric pressure , 1976 .

[31]  M. Wertheimer,et al.  Polymerization of Organosilicones in Microwave Discharges , 1980 .

[32]  D. K. Reinhard,et al.  An investigation of electromagnetic field patterns during microwave plasma diamond thin film deposition , 1990 .

[33]  D. Korzec,et al.  Large volume electron cyclotron resonance plasma generation by use of the slotted antenna microwave source , 1995 .

[34]  A. Maximov,et al.  High energy electron generation in surface-wave-produced plasmas , 1992 .

[35]  J. Engemann,et al.  Langmuir probe measurements in commercial plasma plants , 1994 .

[36]  A. von Engel,et al.  The hollow-cathode effect and the theory of glow discharges , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  J. Asmussen,et al.  Control of multipolar electron cyclotron resonance discharges using internal cavity impedance matching (abstract) a) , 1994 .

[38]  Thomas Weiland,et al.  On the Numerical Solution of Maxwell's Equations and Applications in Accelerator Physics , 1984 .

[39]  J. Asmussen,et al.  A 915 MHz/2.45 GHz ECR plasma source for large area ion beam and plasma processing , 1990 .

[40]  Francis F. Chen,et al.  Experiments on helicon plasma sources , 1992 .

[41]  Jun-ichi Takada,et al.  A reflection cancelling slot set in a linearly polarized radial line slot antenna , 1992 .

[42]  S. Kobayashi,et al.  Gegeneration of a Microwave Plasma Using Traveling Waves , 1989 .

[43]  Y. Tsubakishita,et al.  Long plasma generation using microwave slot antennas on a rectangular waveguide , 1994 .

[44]  R. Bosisio,et al.  Generation of large volume microwave plasmas , 1973 .

[45]  K. Rothermel,et al.  Scaling laws of radio-frequency ion thrusters , 1975 .

[46]  D. Korzec,et al.  Cleaning of metal parts in oxygen radio frequency plasma: Process study* , 1994 .

[47]  D. Korzec,et al.  Broad pressure range PTFE surface modification with slot antenna microwave discharge , 1995 .

[48]  T. H. Stix,et al.  Production of Quiescent Discharge with High Electron Temperatures , 1968 .

[49]  A. Komori,et al.  Production of a Large-Diameter Uniform ECR Plasma with a Lisitano Coil , 1988 .

[50]  J. Engemann,et al.  Characterization of a microwave plasma by in situ diagnostics , 1995 .

[51]  E. Sindoni,et al.  NONRESONANT ABSORPTION OF ELECTROMAGNETIC WAVES IN A HIGH-DENSITY PLASMA. , 1970 .

[52]  R. Hyneman,et al.  Closely-spaced transverse slots in rectangular waveguide , 1959 .

[53]  K. Komachi Affecting factors on surface‐wave‐produced plasma , 1993 .

[54]  D. Korzec,et al.  Slot antenna 2.45 GHz microwave plasma source , 1994 .

[55]  C. J. Mogab,et al.  The Loading Effect in Plasma Etching , 1977 .

[56]  D. Korzec,et al.  Radio frequency hollow cathode discharge for large‐area double‐sided foil processing , 1995 .

[57]  A. Komori,et al.  Impurity Ions in a Plasma Produced by Electron Cyclotron Resonance Heating , 1988 .

[58]  Y. Suetsugu,et al.  RF Field Distributions in a Slotted-Type Lisitano Coil , 1984 .

[59]  M. Tichý,et al.  A Collisional Model of the Positive Ion Collection by a Cylindrical Langmuir Probe , 1994 .

[60]  H. Margenau Theory of High Frequency Gas Discharges. IV. Note on the Similarity Principle , 1948 .