The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] J. L. Webb. OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .
[3] J. Palis,et al. Geometric theory of dynamical systems , 1982 .
[4] S. A. Robertson. GEOMETRIC THEORY OF DYNAMICAL SYSTEMS: An Introduction , 1983 .
[5] L. Simon. Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .
[6] Marco Degiovanni,et al. Evolution equations with lack of convexity , 1985 .
[7] E. Bierstone,et al. Semianalytic and subanalytic sets , 1988 .
[8] J. Moreau,et al. Nonsmooth Mechanics and Applications , 1989 .
[9] R. Thom. Problèmes rencontrés dans mon parcours mathématique : un bilan , 1989 .
[10] J. Risler,et al. Real algebraic and semi-algebraic sets , 1990 .
[11] S. Łojasiewicz. Sur la géométrie semi- et sous- analytique , 1993 .
[12] A. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .
[13] L. Dries,et al. Geometric categories and o-minimal structures , 1996 .
[14] K. Kurdyka. On gradients of functions definable in o-minimal structures , 1998 .
[15] K. Kurdyka,et al. Proof of the gradient conjecture of R. Thom , 1999, math/9906212.
[16] M. Coste. AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .
[17] Robert E. Mahony,et al. Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..
[18] SpringerWien NewYork. CISM COURSES AND LECTURES , 2013 .