The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems

Given a real-analytic function $f:\mathbb{R}^{n} \rightarrow \mathbb{R}$ and a critical point $a \in \mathbb{R}^{n}$, the Łojasiewicz inequality asserts that there exists $\theta\in\lbrack\frac{1}{2},1)$ such that the function $|f-f(a)|^{\theta}\,\Vert\nabla f\Vert^{-1}$ remains bounded around $a$. In this paper, we extend the above result to a wide class of nonsmooth functions (that possibly admit the value $+\infty$), by establishing an analogous inequality in which the derivative $\nabla f(x)$ can be replaced by any element $x^{\ast}$ of the subdifferential $\partial f(x)$ of $f$. Like its smooth version, this result provides new insights into the convergence aspects of subgradient-type dynamical systems. Provided that the function $f$ is sufficiently regular (for instance, convex or lower-$C^{2}$), the bounded trajectories of the corresponding subgradient dynamical system can be shown to be of finite length. Explicit estimates of the rate of convergence are also derived.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[3]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[4]  S. A. Robertson GEOMETRIC THEORY OF DYNAMICAL SYSTEMS: An Introduction , 1983 .

[5]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[6]  Marco Degiovanni,et al.  Evolution equations with lack of convexity , 1985 .

[7]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[8]  J. Moreau,et al.  Nonsmooth Mechanics and Applications , 1989 .

[9]  R. Thom Problèmes rencontrés dans mon parcours mathématique : un bilan , 1989 .

[10]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[11]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .

[12]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[13]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[14]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[15]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[16]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[17]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[18]  SpringerWien NewYork CISM COURSES AND LECTURES , 2013 .