Analytic embedded atom method model for bcc metals

The requirements for fitting bcc metals within the EAM format are discussed and, for comparative purposes, the EAM format is cast in a normalized form. A general embedding function is defined and an analytic first- and second-neighbor model is presented. The parameters in the model are determined from the cohesive energy, the equilibrium lattice constant, the three elastic constants, and the unrelaxed vacancy formation energy. Increasing the elastic constants, increasing the elastic anisotropy ratio, and decreasing the unrelaxed vacancy formation energy favor stability of a close-packed lattice over bcc. A stable bcc lattice relative to close packing is found for nine bcc metals, but this scheme cannot generate a model for Cr because the elastic constants of Cr require a negative curvature of the embedding function.

[1]  G. Ackland,et al.  Atomistic simulation of materials : beyond pair potentials , 1989 .

[2]  R. A. Johnson,et al.  Simple embedded atom method model for fcc and hcp metals , 1988 .

[3]  Joshua R. Smith,et al.  Origins of the universal binding-energy relation. , 1988, Physical review. B, Condensed matter.

[4]  Johnson,et al.  Analytic nearest-neighbor model for fcc metals. , 1988, Physical review. B, Condensed matter.

[5]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[6]  G. Ackland,et al.  Simple N-body potentials for the noble metals and nickel , 1987 .

[7]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[8]  D. Bacon,et al.  Point-defect and stacking-fault properties in body-centred-cubic metals with n-body interatomic potentials , 1986 .

[9]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[10]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[11]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[12]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[13]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[14]  Defect Clusters in B.C.C. Metals,et al.  Point defects and defect interactions in metals , 1982 .

[15]  R. Nieminen,et al.  Atoms embedded in an electron gas: Immersion energies , 1981 .

[16]  H. Schaefer,et al.  High–temperature positron annihilation and vacancy formation in refractory metals , 1979 .

[17]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[18]  R. Feder Equilibrium Defect Concentration in Crystalline Lithium , 1970 .

[19]  R. Feder,et al.  Equilibrium Defect Concentration in Crystalline Sodium , 1966 .

[20]  R. Johnson Point-Defect Calculations for an fcc Lattice , 1966 .

[21]  R. A. Johnson,et al.  Interstitials and Vacancies in α Iron , 1964 .

[22]  C. Kittel Introduction to solid state physics , 1954 .