Investigation of a DNA‐Based Biosensor with Chitosan‐Carbon Nanotubes Interface by Cyclic and Elimination Voltammetry

The paper presents a disposable DNA biosensor based on a composite of multiwalled carbon nanotubes (MWCNT) in chitosan (CHIT) used as an interface at the screen printed carbon electrode (SPCE). Double stranded herring sperm DNA was immobilized over the MWCNT-CHIT layer. The response of the modified SPCE with and without DNA was characterized using the redox probe [Fe(CN)6]3−/4− in the mode of cyclic voltammetry and elimination voltammetry with linear scan (EVLS), which enables the elimination of selected partial voltammetric currents contributing to the total current. The elimination functions providing a significant increase in the voltammetric current sensitivity and improving the peak resolution enable to indicate an adsorbed state of depolarizers, to discover hidden electrode processes, and to determine their nature. The SPCE surface modification was evaluated using (a) the charge transfer coefficient α of the redox probe calculated from the Tafel plot analysis (TPA) and EVLS and (b) the polarization resistance RP for both cathodic and anodic processes.

[1]  Fritz Scholz,et al.  Electro analytical methods: guide to experiments and applications. , 2010 .

[2]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[3]  G. Rivas,et al.  Electrooxidation of DNA at Glassy Carbon Electrodes Modified with Multiwall Carbon Nanotubes Dispersed in Chitosan , 2007 .

[4]  V. Adam,et al.  Elimination Voltammetry with Linear Scan as a New Detection Method for DNA Sensors , 2005, Sensors (Basel, Switzerland).

[5]  L. Trnková,et al.  Electroanalytical determination of d(GCGAAGC) hairpin. , 2004, Bioelectrochemistry.

[6]  G. Rivas,et al.  Carbon nanotubes for electrochemical biosensing. , 2007, Talanta.

[7]  Tomoji Kawai,et al.  A review of DNA functionalized/grafted carbon nanotubes and their characterization , 2007 .

[8]  L. Trnková,et al.  Influence of boric acid on the electrochemical deposition of Ni , 2006 .

[9]  Tomáš Navrátil,et al.  Voltammetric Methods in Metallothionein Research , 2005, Bioinorganic chemistry and applications.

[10]  Joseph G. Shapter,et al.  The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes , 2007 .

[11]  Yuzuru Takamura,et al.  DNA-Directed Attachment of Carbon Nanotubes for Enhanced Label-Free Electrochemical Detection of DNA Hybridization , 2004 .

[12]  R. Compton,et al.  Mass transport corrected Tafel analysis of voltammetric waves: When can it be applied? , 2007 .

[13]  L. Trnková,et al.  Application of Elimination Voltammetry to the Resolution of Adenine and Cytosine Signals in Oligonucleotides II. Hetero-Oligodeoxynucleotides with Different Sequences of Adenine and Cytosine Nucleotides , 2006 .

[14]  A. Erdem,et al.  Nanomaterial-based electrochemical DNA sensing strategies. , 2007, Talanta.

[15]  G. Rivas,et al.  Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes , 2004 .

[16]  Oldrich Dracka,et al.  Elimination voltammetry. Experimental verification and extension of theoretical results , 1996 .

[17]  L. Trnková,et al.  The study of Ni–Co alloy deposition on iron powder particles in a fluidized bed from sulphate bath , 2006 .

[18]  R. Compton,et al.  Voltammetric waveshapes measured in flowing systems: Mass transport-limited tafel analysis of some nonsimple systems , 1993 .

[19]  K. Shanmugam,et al.  Voltammetric Determination of Phenylglyoxylic Acid in Urine Using Graphite Composite Electrode , 2006 .

[20]  Libuše Trnková,et al.  Identification of current nature by elimination voltammetry with linear scan , 2005 .

[21]  L. Trnková,et al.  Application of elimination voltammetry in the study of electroplating processes on the graphite electrode , 2004 .

[22]  Joseph Wang,et al.  Analytical Electrochemistry: Wang/Analytical Electrochemistry, Third Edition , 2006 .

[23]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[24]  L. Trnková,et al.  A Study of Nickel Electrodeposition on Paraffin-Impregnated Graphite Electrode , 2006 .

[25]  L. Trnková,et al.  Elimination voltammetry of adenine and cytosine mixtures. , 2001, Bioelectrochemistry.

[26]  Rene Kizek,et al.  Application of Elimination Voltammetry to Adsorptive Stripping of DNA , 2000 .

[27]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[28]  Shanchao Liu,et al.  DNA biosensor based on chitosan film doped with carbon nanotubes. , 2005, Analytical biochemistry.

[29]  R. Kizek,et al.  Elimination voltammetry of nucleic acids on silver electrodes. , 2002, Bioelectrochemistry.

[30]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[31]  Joseph Wang,et al.  Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. , 2004, Biosensors & bioelectronics.

[32]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[33]  K. Lee Chitosan and its derivatives for gene delivery , 2007 .

[34]  A. Ferancová,et al.  DNA-Modified Screen-Printed Electrodes with Nanostructured Films of Multiwall Carbon Nanotubes, Hydroxyapatite and Montmorillonite , 2006 .

[35]  J Wang,et al.  Electroanalysis and biosensors. , 1993, Analytical chemistry.

[36]  R. Kizek,et al.  Square wave and elimination voltammetric analysis of azidothymidine in the presence of oligonucleotides and chromosomal DNA. , 2004, Bioelectrochemistry.

[37]  E. Paleček,et al.  From polarography of DNA to microanalysis with nucleic acid-modified electrodes , 1996 .

[38]  I. Štěpánek,et al.  Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells , 2006, Analytical and bioanalytical chemistry.

[39]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[40]  L. Trnková Electrochemical behavior of DNA at a silver electrode studied by cyclic and elimination voltammetry. , 2002, Talanta.

[41]  Jan Labuda,et al.  Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes-Chitosan Composite Layer for the Detection of Deep DNA Damage , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[42]  Shaojun Dong,et al.  Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. , 2006, Biosensors & bioelectronics.

[43]  Yu Fang,et al.  Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels , 2001 .

[44]  L. Trnková,et al.  Cadmium reduction process on paraffin impregnated graphite electrode studied by elimination voltammetry with linear scan , 2006 .

[45]  S. Sander,et al.  Study of the Complexation, Adsorption and Electrode Reaction Mechanisms of Chromium(VI) and (III) with DTPA Under Adsorptive Stripping Voltammetric Conditions , 2003 .

[46]  Shouzhuo Yao,et al.  Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. , 2004, Bioelectrochemistry.

[47]  L. Trnková,et al.  Application of Elimination Voltammetry to the Resolution of Adenine and Cytosine Signals in Oligonucleotides. I. Homo-oligodeoxynucleotides dA9 and dC9 , 2003 .

[48]  Oldřich Dračka,et al.  Theory of current elimination in linear scan voltammetry , 1996 .

[49]  P. He,et al.  Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection , 2003, Analytical and bioanalytical chemistry.

[50]  A. Il’ina,et al.  Chitosan-based polyelectrolyte complexes: A review , 2005, Applied Biochemistry and Microbiology.

[51]  Joseph Wang Electrochemical nucleic acid biosensors , 2002 .

[52]  Gustavo Rivas,et al.  DNA electrochemical biosensors for environmental monitoring. A review , 1997 .