A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles
暂无分享,去创建一个
Stéphane Lanteri | Claire Scheid | Jonathan Viquerat | Raphaël Léger | Clément Durochat | J. Viquerat | S. Lanteri | C. Scheid | Raphaël Léger | Clément Durochat
[1] M. König,et al. The Discontinuous Galerkin Time-Domain method for Maxwell’s equations with anisotropic materials , 2010 .
[2] Stéphane Lanteri,et al. Performance Evaluation of a Multi-GPU Enabled Finite Element Method for Computational Electromagnetics , 2011, Euro-Par Workshops.
[3] L. Fezoui,et al. Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .
[4] E. Montseny,et al. Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations , 2008, J. Comput. Phys..
[5] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[6] Stéphane Lanteri,et al. A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics , 2010, J. Comput. Appl. Math..
[7] G. Schatz,et al. Calculating nonlocal optical properties of structures with arbitrary shape , 2009, 0912.4746.
[8] Jin-Fa Lee,et al. Interconnect and lumped elements modeling in interior penalty discontinuous Galerkin time-domain methods , 2010, J. Comput. Phys..
[9] H. V. Hulst. Light Scattering by Small Particles , 1957 .
[10] Kurt Busch,et al. Discontinuous Galerkin time-domain computations of metallic nanostructures. , 2009, Optics express.
[11] P. Drude. Zur Elektronentheorie der Metalle , 1900 .
[12] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[13] Z. Cendes,et al. Keeping Time with Maxwell's Equations , 2010, IEEE Microwave Magazine.
[14] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[15] Kurt Busch,et al. Higher-order time-domain methods for the analysis of nano-photonic systems , 2009 .
[16] Stéphane Lanteri,et al. Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations , 2013 .
[17] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[18] Stéphane Lanteri,et al. Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell’s Equations , 2013, J. Sci. Comput..
[19] Hassan Fahs. High-Order Leap-Frog Based Discontinuous Galerkin Method for the Time-Domain Maxwell Equations on Non-Conforming Simplicial Meshes , 2009 .
[20] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[21] Marc Lamy de la Chapelle,et al. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .
[22] S. Xiao,et al. Nanoplasmonics beyond Ohm's law , 2012 .
[23] F. Teixeira. Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media , 2008, IEEE Transactions on Antennas and Propagation.
[24] H. Fahs. Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation , 2009 .
[25] Stéphane Lanteri,et al. High order non-conforming multi-element discontinuous Galerkin method for time-domain electromagnetics , 2012, 2012 International Conference on Electromagnetics in Advanced Applications.
[26] Kyung-Young Jung,et al. $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.