Evaluating products of matrix pencils and collapsing matrix products

This paper describes three numerical methods to collapse a formal product of p pairs of matrices down to the product of a single pair E−1Â. In the setting of linear relations, the product formally extends to the case in which some of the Ek's are singular and it is impossible to explicitly form P as a single matrix. The methods differ in flop count, work space, and inherent parallelism. They have in common that they are immune to overflows and use no matrix inversions. A rounding error analysis shows that the special case of collapsing two pairs is numerically backward stable. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  Alan J. Laub,et al.  A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .

[2]  V. Kublanovskaya,et al.  Spectral problems for matrix pencils. Methods and algorithms. III. , 1988 .

[3]  S. Bittanti,et al.  The Periodic Riccati Equation , 1991 .

[4]  A. Laub,et al.  Computing the singular value decompostion of a product of two matrices , 1986 .

[5]  A. Malyshev Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .

[6]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .

[7]  Enrique S. Quintana-Ortí,et al.  Parallel codes for computing the numerical rank , 1998 .

[8]  Patrizio Colaneri,et al.  Existence and uniqueness conditions for the periodic solutions of the discrete-time periodic Lyapunov equation , 1986, 1986 25th IEEE Conference on Decision and Control.

[9]  S. Bittanti Deterministic and stochastic linear periodic systems , 1986 .

[10]  G. Stewart A method for computing the generalized singular value decomposition , 1983 .

[11]  A. Laub,et al.  Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..

[12]  P. Dooren,et al.  Periodic Schur forms and some matrix equations , 1994 .

[13]  Patrizio Colaneri,et al.  Lyapunov and Riccati equations: Periodic inertia theorems , 1986 .

[14]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[15]  V. Kublanovskaya AB-Algorithm and its modifications for the spectral problems of linear pencils of matrices , 1984 .

[16]  P. Van Dooren,et al.  Two point boundary value and periodic eigenvalue problems , 1999 .

[17]  Peter Benner,et al.  Arithmetic for rectangular matrix pencils , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[18]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  András Varga,et al.  Gradient-Based Approach to Solve Optimal Periodic Output Feedback Control Problems , 1998, Autom..

[21]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[22]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[23]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988, 1988 American Control Conference.

[24]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[25]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[26]  L. Auslander,et al.  On parallelizable eigensolvers , 1992 .

[27]  Adam W. Bojanczyk,et al.  Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.

[28]  Jack J. Dongarra,et al.  A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..

[29]  Thomas Schreiber,et al.  A New Efficient Parallelization Strategy for the QR Algorithm , 1994, Parallel Comput..

[30]  A. Varga Periodic Lyapunov equations: Some applications and new algorithms , 1997 .

[31]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[32]  Alan J. Laub,et al.  A Collection of Benchmark Examples for the Numerical Solution of Algebraic Riccati Equations II: Dis , 1995 .

[33]  Peter Benner,et al.  An Arithmetic for Matrix Pencils , 1998 .

[34]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[35]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[36]  Rafael Mayo,et al.  Solving Discrete-Time Periodic Riccati Equations on a Cluster (Research Note) , 2000, Euro-Par.

[37]  Paul Van Dooren,et al.  Periodic descriptor systems: solvability and conditionability , 1999, IEEE Trans. Autom. Control..

[38]  S. Godunov,et al.  Circular dichotomy of the spectrum of a matrix , 1988 .

[39]  Robert A. van de Geijn,et al.  Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..

[40]  D. Luenberger Boundary recursion for descriptor variable systems , 1987, IEEE Conference on Decision and Control.

[41]  Charles Van Loan,et al.  A General Matrix Eigenvalue Algorithm , 1975 .

[42]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[43]  Jack J. Dongarra,et al.  A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem , 1993, SIAM J. Sci. Comput..