Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation

We first review some recent and current research works attributing to a very significant progress on shell problem theoretical foundation and numerical implementation attained over a period of the last several years. We then discuss theoretical formulations of shell model accounting for the trough-the-thickness stretching, which allows for large deformations and direct use of 3d constitutive equations. Three different possibilities for implementing this model within the framework of the finite element method are examined, one leading to 7 nodal parameters and the remaining two to 6 nodal parameters. Comparisons are performed of the 7- parameter shell model with no simplification of kinematic terms and 7-parameter shell model which exploits usual simplifications of Green-Lagrange strain measures. Comparisons are also presented of two different ways of implementing the incompatible mode method for reducing the number of shell model parameters to 6. One implementation uses additive decomposition of the strains and the other additive decomposition of the deformation gradient. Several numerical examples are given to illustrate performance of the shell elements developed herein.

[1]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[2]  Dr.-Ing. C. Sansour A Theory and finite element formulation of shells at finite deformations involving thickness change , 1995 .

[3]  Adnan Ibrahimbegovic,et al.  Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations , 1993 .

[4]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[5]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[6]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[7]  Carlo Sansour,et al.  A theory and finite element formulation of shells at finite deformations involving thickness change: Circumventing the use of a rotation tensor , 1995, Archive of Applied Mechanics.

[8]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[9]  Joze Korelc,et al.  Hybrid system for multi-language and multi-environment generation of numerical codes , 2001, ISSAC '01.

[10]  Edward L. Wilson,et al.  A modified method of incompatible modes , 1991 .

[11]  A. Ibrahimbegovic,et al.  Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .

[12]  Wilfried B. Krätzig,et al.  ‘Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations , 1993 .

[13]  Boštjan Brank,et al.  On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element , 1997 .

[14]  R. Hauptmann,et al.  `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials , 2001 .

[15]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[16]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[17]  Boštjan Brank,et al.  On the relation between different parametrizations of finite rotations for shells , 2001 .

[18]  Adnan Ibrahimbegovic,et al.  On assumed shear strain in finite rotation shell analysis , 1995 .

[19]  S. A. Meguid,et al.  A new shell element accounting for through-thickness deformation , 2000 .

[20]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[21]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[22]  Mikhail Itskov,et al.  Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements , 2000 .

[23]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[24]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[25]  Bernard Budiansky,et al.  Notes on nonlinear shell theory. , 1968 .

[26]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[27]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[28]  P. Wriggers,et al.  A fully non‐linear axisymmetrical quasi‐kirchhoff‐type shell element for rubber‐like materials , 1993 .

[29]  Adnan Ibrahimbegovic,et al.  Stress resultant geometrically non‐linear shell theory with drilling rotations. Part III: Linearized kinematics , 1994 .

[30]  Yavuz Başar,et al.  Shear deformation models for large-strain shell analysis , 1997 .

[31]  A. Ibrahimbegovic On the choice of finite rotation parameters , 1997 .

[32]  Boštjan Brank,et al.  Stress resultant geometrically exact form of classical shell model and vector‐like parameterization of constrained finite rotations , 2001 .

[33]  A. Ibrahimbegovic Stress Resultant Geometrically Exact Shell Theory for Finite Rotations and Its Finite Element Implementation , 1997 .

[34]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[35]  E. Ramm,et al.  On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation , 2000 .

[36]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[37]  J. Korelc Automatic Generation of Numerical Code , 2003 .

[38]  B. Brank,et al.  On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells , 1995 .

[39]  O. C. Zienkiewicz,et al.  THE PATCH TEST: A CONDITION FOR ASSESSING FINITE ELEMENT CONVERGENCE , 1986 .

[40]  Joze Korelc,et al.  Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..

[41]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[42]  A. Ibrahimbegovic,et al.  Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .

[43]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .