A Novel Integrated Approach for Cytogenomic Evaluation of Plasma Cell Neoplasms.

[1]  G. Morgan,et al.  Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma , 2021, Nature Communications.

[2]  G. Morgan,et al.  Chromothripsis as a pathogenic driver of multiple myeloma. , 2021, Seminars in cell & developmental biology.

[3]  G. Bianchi,et al.  Changing paradigms in diagnosis and treatment of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) , 2020, Leukemia.

[4]  D. Dingli,et al.  Implications of MYC Rearrangements in Newly Diagnosed Multiple Myeloma , 2020, Clinical Cancer Research.

[5]  H. Goldschmidt,et al.  International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM) , 2020, Blood Cancer Journal.

[6]  Gian Maria Zaccaria,et al.  Early Relapse Risk in Patients with Newly Diagnosed Multiple Myeloma Characterized by Next-generation Sequencing , 2020, Clinical Cancer Research.

[7]  Rónán O’Connor,et al.  Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. , 2020, Clinical lymphoma, myeloma & leukemia.

[8]  T. Myklebust,et al.  Incidence and survival of multiple myeloma: a population‐based study of 10 524 patients diagnosed 1982–2017 , 2020, British journal of haematology.

[9]  S. Rajkumar,et al.  Multiple myeloma: 2020 update on diagnosis, risk‐stratification and management , 2020, American journal of hematology.

[10]  Caleb K. Stein,et al.  MYC dysregulation in the progression of multiple myeloma , 2019, Leukemia.

[11]  D. Auclair,et al.  Multiple myeloma immunoglobulin lambda translocations portend poor prognosis , 2019, Nature Communications.

[12]  B. Quesnel,et al.  Deregulation and Targeting of TP53 Pathway in Multiple Myeloma , 2019, Front. Oncol..

[13]  P. Campbell,et al.  Genomic landscape and chronological reconstruction of driver events in multiple myeloma , 2018, Nature Communications.

[14]  Jin-Yeong Han,et al.  Recent advances in cytogenetic characterization of multiple myeloma , 2018, International journal of laboratory hematology.

[15]  Adrian V. Lee,et al.  Whole genome amplification of cell-free DNA enables detection of circulating tumor DNA mutations from fingerstick capillary blood , 2018, Scientific Reports.

[16]  H. Goldschmidt,et al.  European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when , 2018, Haematologica.

[17]  R. Kyle,et al.  Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. , 2018, Clinical biochemistry.

[18]  J. Cerhan,et al.  Prevalence of myeloma precursor state monoclonal gammopathy of undetermined significance in 12372 individuals 10–49 years old: a population-based study from the National Health and Nutrition Examination Survey , 2017, Blood Cancer Journal.

[19]  N. Munshi,et al.  Genomics in Multiple Myeloma , 2022 .

[20]  G. Morgan,et al.  Genomewide profiling of copy‐number alteration in monoclonal gammopathy of undetermined significance , 2016, European journal of haematology.

[21]  H. Goldschmidt,et al.  Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. , 2016, Blood.

[22]  R. Advani,et al.  The World Health Organization Classification of Lymphoid Neoplasms , 2013 .

[23]  E. Kjeldsen Identification of Prognostically Relevant Chromosomal Abnormalities in Routine Diagnostics of Multiple Myeloma Using Genomic Profiling. , 2016, Cancer genomics & proteomics.

[24]  Yoo-Jin Kim,et al.  Copy number variations could predict the outcome of bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma , 2015, Genes, chromosomes & cancer.

[25]  Hans Erik Johnsen,et al.  International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. , 2014, The Lancet. Oncology.

[26]  Nicolò Manaresi,et al.  Molecular profiling of single circulating tumor cells with diagnostic intention , 2014, EMBO molecular medicine.

[27]  E. Nacheva,et al.  Can genome array screening replace FISH as a front‐line test in multiple myeloma? , 2014, Genes, chromosomes & cancer.

[28]  T. Chevassut,et al.  The Genetic Architecture of Multiple Myeloma , 2014, Advances in hematology.

[29]  M. Beksac,et al.  European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma , 2014, Haematologica.

[30]  A. Enjeti,et al.  Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow , 2013, Journal of Clinical Pathology.

[31]  P. Sonneveld,et al.  Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders , 2012, Haematologica.

[32]  G. Morgan,et al.  The genetic architecture of multiple myeloma , 2012, Nature Reviews Cancer.

[33]  H. Kearney,et al.  Section E9 of the American College of Medical Genetics technical standards and guidelines: Fluorescence in situ hybridization , 2011, Genetics in Medicine.

[34]  P. Moreau,et al.  Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  Cheng Li,et al.  Prognostic significance of copy-number alterations in multiple myeloma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  R. Bataille,et al.  Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. , 2007, Blood.