Multichannel blind deconvolution of nonminimum-phase systems using filter decomposition

In this paper, we present a new filter decomposition method for multichannel blind deconvolution of nonminimum-phase systems. With this approach, we decompose a doubly finite impulse response filter into a cascade form of two filters: a causal finite impulse response (FIR) filter and an anticausal FIR filter. After introducing a Lie group to the manifold of FIR filters, we discuss geometric properties of the FIR filter manifold. Using the nonholonomic transform, we derive the natural gradient on the FIR manifold. By simplifying the mutual information rate, we present a very simple cost function for blind deconvolution of nonminimum-phase systems. Subsequently, the natural gradient algorithms are developed both for the causal FIR filter and for the anticausal FIR filter. Simulations are presented to illustrate the validity and favorable learning performance of the proposed algorithms.

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[3]  Y. Sato Two Extensional Applications of the Zero-Forcing Equalization Method , 1975, IEEE Trans. Commun..

[4]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[5]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[6]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .

[7]  J. Treichler,et al.  A new approach to multipath correction of constant modulus signals , 1983 .

[8]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[10]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[11]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[12]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[13]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[14]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[15]  Yingbo Hua,et al.  Previously Published Works Uc Riverside Title: Fast Maximum Likelihood for Blind Identification of Multiple Fir Channels Fast Maximum Likelihood for Blind Identification of Multiple Fir Channels , 2022 .

[16]  J. Cadzow Blind deconvolution via cumulant extrema , 1996, IEEE Signal Process. Mag..

[17]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[18]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[19]  Shun-ichi Amari,et al.  Stability Analysis Of Adaptive Blind Source Separation , 1997 .

[20]  Andrzej Cichocki,et al.  Stability Analysis of Learning Algorithms for Blind Source Separation , 1997, Neural Networks.

[21]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[22]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[23]  Shuichi Ohno,et al.  Adaptive Algorithms for Implementing the Single-Stage Criterion for Multichannel Blind Deconvolution , 1998, ICONIP.

[24]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[25]  Christophe Laot,et al.  Adaptive decision feedback equalization: can you skip the training period? , 1998, IEEE Trans. Commun..

[26]  Liqing Zhang,et al.  Natural gradient algorithm for blind separation of overdetermined mixture with additive noise , 1999, IEEE Signal Processing Letters.

[27]  Philippe Loubaton,et al.  Blind identification of MIMO-FIR systems: A generalized linear prediction approach , 1999, Signal Process..

[28]  Shun-ichi Amari,et al.  Natural Gradient Learning for Over- and Under-Complete Bases in ICA , 1999, Neural Computation.

[29]  Asoke K. Nandi,et al.  Blind equalisation with recursive filter structures , 2000, Signal Process..

[30]  Jitendra K. Tugnait,et al.  Multistep linear predictors-based blind identification and equalization of multiple-input multiple-output channels , 2000, IEEE Trans. Signal Process..

[31]  Jitendra Tugnait,et al.  Blind identifiability of FIR-MIMO systems with colored input using second order statistics , 2000, IEEE Signal Processing Letters.

[32]  Christian Jutten,et al.  Quasi-nonparametric blind inversion of Wiener systems , 2001, IEEE Trans. Signal Process..

[33]  Liqing Zhang,et al.  Semiparametric model and superefficiency in blind deconvolution , 2001, Signal Process..

[34]  Zhi Ding,et al.  Blind Equalization and Identification , 2001 .

[35]  Dinh-Tuan Pham,et al.  Mutual information approach to blind separation of stationary sources , 2002, IEEE Trans. Inf. Theory.