Processing of multi-dimensional NMR data with the new software PROSA

SummaryThe new program PROSA is an efficient implementation of the common data-processing steps for multi-dimensional NMR spectra. PROSA performs linear prediction, digital filtering, Fourier transformation, automatic phase correction, and baseline correction. High efficiency is achieved by avoiding disk storage of intermediate data and by the absence of any graphics display, which enables calculation in the batch mode and facilitates porting PROSA on a variety of different computer systems; including supercomputers. Furthermore, all time-consuming routines are completely vectorized. The elimination of a graphics display was made possible by the use of a new, reliable automatic phase-correction routine. CPU times for complete processing of a typical heteronuclear three-dimensional NMR data set of a protein vary between less than 1 min on a NEC SX3 supercomputer and 40 min on a Sun-4 computer system.

[1]  Gerald A. Pearson,et al.  A general baseline-recognition and baseline-flattening algorithm , 1977 .

[2]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[3]  Guang Zhu,et al.  Improved linear prediction for truncated signals of known phase , 1990 .

[4]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[5]  A. Bax,et al.  Baseline correction of 2D FT NMR spectra using a simple linear prediction extrapolation of the time-domain data , 1989 .

[6]  K. Wüthrich,et al.  Digital filtering with a sinusoidal window function: An alternative technique for resolution enhancement in FT NMR , 1976 .

[7]  A. Petros,et al.  Four-dimensional [13C,1H,13C,1H] HMQC-NOE-HMQC NMR spectroscopy: resolving tertiary nuclear Overhauser effect distance constraints in the spectra of larger proteins , 1991 .

[8]  Edward T. Olejniczak,et al.  Extrapolation of time-domain data with linear prediction increases resolution and sensitivity , 1990 .

[9]  Jerome L. Ackerman,et al.  Fully automatic software correction of fourier transform NMR spectra , 1977 .

[10]  A. Heuer A NEW ALGORITHM FOR AUTOMATIC PHASE CORRECTION BY SYMMETRIZING LINES , 1991 .

[11]  Truman R. Brown,et al.  The accuracy of quantification from 1D NMR spectra using the PIQABLE algorithm , 1989 .

[12]  G. Marius Clore,et al.  Automatic phasing of pure phase absorption two-dimensional NMR spectra , 1988 .

[13]  Kurt Wüthrich,et al.  Origin of τ2 and τ2 ridges in 2D NMR spectra and procedures for suppression , 1986 .

[14]  K. Wüthrich Protein structure determination in solution by NMR spectroscopy. , 1990, The Journal of biological chemistry.

[15]  David S. Stephenson,et al.  Linear prediction and maximum entropy methods in NMR spectroscopy , 1988 .

[16]  Richard N. Moore,et al.  Automated phase correction of FT NMR spectra by baseline optimization , 1989 .

[17]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[18]  L. Kay,et al.  Four-dimensional carbon-13/carbon-13-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: application to interleukin 1.beta. , 1991 .

[19]  R. R. Ernst Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy , 1969 .

[20]  G. Marius Clore,et al.  1H1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins , 1990 .

[21]  W. Dietrich,et al.  Fast and precise automatic baseline correction of one- and two-dimensional nmr spectra , 1991 .

[22]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[23]  K Wüthrich,et al.  Efficient analysis of protein 2D NMR spectra using the software packageEASY , 1991, Journal of biomolecular NMR.

[24]  D. van Ormondt,et al.  Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .

[25]  K. Wüthrich,et al.  FLATT—A new procedure for high-quality baseline correction of multidimensional NMR spectra , 1992 .

[26]  L. Kay,et al.  Removal of F1 baseline distortion and optimization of folding in multidimensional NMR spectra , 1991 .

[27]  L. Gladden,et al.  A numerical phasing technique for application to one-dimensional NMR spectra , 1986 .

[28]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[29]  A. Marshall,et al.  Dispersion versus absorption: spectral line shape analysis for radiofrequency and microwave spectrometry , 1978 .

[30]  S. Fesik,et al.  Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules , 1990, Quarterly Reviews of Biophysics.

[31]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[32]  G. Marius Clore,et al.  Applications of three- and four-dimensional heteronuclear NMR spectroscopy to protein structure determination , 1991 .

[33]  George C. Levy,et al.  Phase correction of two-dimensional NMR spectra using DISPA , 1992 .