The evolutionary journey of Argonaute proteins

[1]  Stan J. J. Brouns,et al.  DNA-guided DNA interference by a prokaryotic Argonaute , 2014, Nature.

[2]  Stan J. J. Brouns,et al.  Planting the seed: target recognition of short guide RNAs. , 2014, Trends in microbiology.

[3]  M. Nowacki,et al.  Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. , 2014, Developmental cell.

[4]  P. Tinnefeld,et al.  Single-molecule FRET supports the two-state model of Argonaute action , 2014, RNA biology.

[5]  D. C. Swarts,et al.  Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage , 2013, Proceedings of the National Academy of Sciences.

[6]  C. Mello,et al.  The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. , 2013, Developmental cell.

[7]  Julie M. Claycomb,et al.  Protection of germline gene expression by the C. elegans Argonaute CSR-1. , 2013, Developmental cell.

[8]  A. Joachimiak,et al.  Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. , 2013, Journal of the American Chemical Society.

[9]  N. Carriero,et al.  Role of the Trypanosoma brucei HEN1 Family Methyltransferase in Small Interfering RNA Modification , 2013, Eukaryotic Cell.

[10]  Olivier Voinnet,et al.  Antiviral RNA Interference in Mammalian Cells , 2013, Science.

[11]  Yang Li,et al.  RNA Interference Functions as an Antiviral Immunity Mechanism in Mammals , 2013, Science.

[12]  R. Aebersold,et al.  Structural features of Argonaute–GW182 protein interactions , 2013, Proceedings of the National Academy of Sciences.

[13]  R. Sachidanandam,et al.  Bacterial argonaute samples the transcriptome to identify foreign DNA. , 2013, Molecular cell.

[14]  Xuemei Chen,et al.  Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs[OPEN] , 2013, Plant Cell.

[15]  M. Ascano,et al.  Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. , 2013, Cell reports.

[16]  G. Hannon,et al.  The making of a slicer: activation of human Argonaute-1. , 2013, Cell reports.

[17]  René F. Ketting,et al.  PIWI-interacting RNAs: from generation to transgenerational epigenetics , 2013, Nature Reviews Genetics.

[18]  L. Aravind,et al.  Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes , 2013, Biology Direct.

[19]  G. Meister Argonaute proteins: functional insights and emerging roles , 2013, Nature Reviews Genetics.

[20]  G. Meister,et al.  Turning catalytically inactive human Argonaute proteins into active slicer enzymes , 2013, Nature Structural &Molecular Biology.

[21]  L. Joshua-Tor,et al.  Eukaryotic Argonautes come into focus. , 2013, Trends in biochemical sciences.

[22]  Kira S. Makarova,et al.  Comparative genomics of defense systems in archaea and bacteria , 2013, Nucleic acids research.

[23]  R. Green,et al.  Regulation of Argonaute Slicer Activity by Guide RNA 3′ End Interactions with the N-terminal Lobe* , 2013, The Journal of Biological Chemistry.

[24]  Joerg E Braun,et al.  The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets , 2012, Nucleic acids research.

[25]  B. Byrne,et al.  Bacterial TIR-containing proteins and host innate immune system evasion , 2013, Medical Microbiology and Immunology.

[26]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[27]  Kuniaki Saito,et al.  Structure and function of Zucchini endoribonuclease in piRNA biogenesis , 2012, Nature.

[28]  Jing Zhang,et al.  The CRISPR Associated Protein Cas4 Is a 5′ to 3′ DNA Exonuclease with an Iron-Sulfur Cluster , 2012, PloS one.

[29]  N. Sonenberg,et al.  Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs , 2012, The EMBO journal.

[30]  E. Ullu,et al.  Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei , 2012, BMC Genomics.

[31]  B. Byrne,et al.  Bacterial TIR-containing proteins and host innate immune system evasion , 2012, Medical Microbiology and Immunology.

[32]  G. Hannon,et al.  The Structure of Human Argonaute-2 in Complex with miR-20a , 2012, Cell.

[33]  Nahum Sonenberg,et al.  The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC , 2012, Nature Structural &Molecular Biology.

[34]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[35]  D. Bartel,et al.  Structure of yeast Argonaute with guide RNA , 2012, Nature.

[36]  E. Ullu,et al.  Comparative Genomics Reveals Two Novel RNAi Factors in Trypanosoma brucei and Provides Insight into the Core Machinery , 2012, PLoS pathogens.

[37]  Y. Tomari,et al.  The N domain of Argonaute drives duplex unwinding during RISC assembly , 2012, Nature Structural &Molecular Biology.

[38]  S. Kawaoka,et al.  3' end formation of PIWI-interacting RNAs in vitro. , 2011, Molecular cell.

[39]  Eugene V Koonin,et al.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems , 2011, Biology Direct.

[40]  Steffen Schmidt,et al.  Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein , 2011, Proceedings of the National Academy of Sciences.

[41]  R. Ketting The many faces of RNAi. , 2011, Developmental cell.

[42]  Miguel A Andrade-Navarro,et al.  Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. , 2011, Structure.

[43]  Yuan Tian,et al.  Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains , 2010, Proceedings of the National Academy of Sciences.

[44]  S. Pantano,et al.  Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. , 2010, Gene.

[45]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[46]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[47]  E. Izaurralde,et al.  Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein , 2010, EMBO reports.

[48]  N. Sonenberg,et al.  Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2 , 2010, Nature.

[49]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[50]  Gunter Meister,et al.  Argonaute proteins at a glance , 2010, Journal of Cell Science.

[51]  A. F. Bochner,et al.  Small regulatory RNAs inhibit RNA Polymerase II during the elongation phase of transcription , 2010, Nature.

[52]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[53]  J. Parker How to slice: snapshots of Argonaute in action , 2010, Silence.

[54]  B. Michel,et al.  The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo , 2009, The EMBO journal.

[55]  Z. Paroo,et al.  ATP-dependent human RISC assembly pathways , 2010, Nature Structural &Molecular Biology.

[56]  E. Ullu,et al.  Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei , 2009, Proceedings of the National Academy of Sciences.

[57]  T. Tuschl,et al.  Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes , 2009, Nature.

[58]  Pedro J. Batista,et al.  CDE-1 Affects Chromosome Segregation through Uridylation of CSR-1-Bound siRNAs , 2009, Cell.

[59]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[60]  E. Koonin,et al.  Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements , 2009, Biology Direct.

[61]  H. Seitz,et al.  Structural determinants of miRNAs for RISC loading and slicer-independent unwinding , 2009, Nature Structural &Molecular Biology.

[62]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[63]  M. Nowotny,et al.  Retroviral integrase superfamily: the structural perspective , 2009, EMBO reports.

[64]  D. Barford,et al.  Enhancement of the Seed-Target Recognition Step in RNA Silencing by a PIWI/MID Domain Protein , 2009, Molecular cell.

[65]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[66]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[67]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[68]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[69]  E. Koonin,et al.  Origins and evolution of eukaryotic RNA interference. , 2008, Trends in ecology & evolution.

[70]  Gregory J. Hannon,et al.  Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide , 2008, Cell.

[71]  G. Meister,et al.  The Argonaute protein family , 2008, Genome Biology.

[72]  L. O’Neill,et al.  Signalling of toll-like receptors. , 2008, Handbook of experimental pharmacology.

[73]  Martin J. Simard,et al.  Argonaute proteins: key players in RNA silencing , 2008, Nature Reviews Molecular Cell Biology.

[74]  E. Pålsson-McDermott,et al.  Building an immune system from nine domains. , 2007, Biochemical Society transactions.

[75]  S. Dinesh-Kumar,et al.  The Functions of Plant TIR Domains , 2007, Science's STKE.

[76]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[77]  N. Grishin,et al.  Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches , 2007, BMC Structural Biology.

[78]  H. Gohlke,et al.  Structure of Aquifex aeolicus Argonaute Highlights Conformational Flexibility of the PAZ Domain as a Potential Regulator of RNA-induced Silencing Complex Function* , 2007, Journal of Biological Chemistry.

[79]  Titia Sijen,et al.  Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class , 2007, Science.

[80]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[81]  E. Ullu,et al.  An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. , 2006, RNA.

[82]  Pedro J. Batista,et al.  Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi , 2006, Cell.

[83]  R. Andino,et al.  The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. , 2006, Genes & development.

[84]  Wei Yang,et al.  Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release , 2006, The EMBO journal.

[85]  Robert Huber,et al.  Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[86]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[87]  N. Grishin,et al.  Identification of novel restriction endonuclease-like fold families among hypothetical proteins , 2005, Nucleic acids research.

[88]  Joan W Conaway,et al.  The mammalian Mediator complex and its role in transcriptional regulation. , 2005, Trends in biochemical sciences.

[89]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[90]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[91]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[92]  M. Gorovsky,et al.  A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. , 2005, Genes & development.

[93]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[94]  S. Kaufmann,et al.  Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. , 2004, International immunology.

[95]  D. Baulcombe RNA silencing in plants , 2004, Nature.

[96]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[97]  Michael Sattler,et al.  Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain , 2004, Nature Structural &Molecular Biology.

[98]  D. Patel,et al.  Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain , 2004, Nature.

[99]  Eugene V Koonin,et al.  Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. , 2004, Nucleic acids research.

[100]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[101]  Ming-Ming Zhou,et al.  Structure and conserved RNA binding of the PAZ domain , 2003, Nature.

[102]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[103]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[104]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[105]  A. Djikeng,et al.  RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. , 2001, RNA.

[106]  A. Bateman,et al.  Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. , 2000, Trends in biochemical sciences.

[107]  E. Koonin,et al.  DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.

[108]  D. Bouchez,et al.  AGO1 defines a novel locus of Arabidopsis controlling leaf development , 1998, The EMBO journal.