Persistence of Hyperbolic-type Degenerate Lower-dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems

[1]  B. Fayad,et al.  Around the stability of KAM tori , 2013, 1311.7334.

[2]  A. Neishtadt,et al.  Lagrangian tori near resonances of near-integrable Hamiltonian systems , 2013, 1311.0132.

[3]  B. Fayad,et al.  KAM-tori near an analytic elliptic fixed point , 2013, Regular and Chaotic Dynamics.

[4]  Junxiang Xu On quasi-periodic perturbations of hyperbolic-type degenerateequilibrium point of a class of planar systems , 2012 .

[5]  Junxiang Xu,et al.  Persistence of the non-twist torus in nearly integrable hamiltonian systems , 2010 .

[6]  J. Pöschel,et al.  A lecture on the classical KAM theorem , 2009, 0908.2234.

[7]  M. Sevryuk KAM tori: persistence and smoothness , 2008 .

[8]  Mikhail B Sevryuk,et al.  Partial preservation of frequencies in KAM theory , 2006 .

[9]  Guido Gentile,et al.  Degenerate lower-dimensional tori under the Bryuno condition , 2005, Ergodic Theory and Dynamical Systems.

[10]  Y. Yi,et al.  Persistence of hyperbolic tori in Hamiltonian systems , 2005 .

[11]  Y. Yi,et al.  Persistence of lower dimensional tori of general types in Hamiltonian systems , 2004 .

[12]  G. Gentile,et al.  Degenerate Elliptic Resonances , 2004, math/0405420.

[13]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[14]  Yong Li,et al.  KAM-Type Theorem on Resonant Surfaces for Nearly Integrable Hamiltonian Systems , 2000, J. Nonlinear Sci..

[15]  J. You A KAM Theorem for Hyperbolic-Type Degenerate Lower Dimensional Tori in Hamiltonian Systems , 1998 .

[16]  Junxiang Xu,et al.  Invariant tori for nearly integrable Hamiltonian systems with degeneracy , 1997 .

[17]  Stephen Wiggins,et al.  KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable hamiltonian systems , 1997 .

[18]  Chong-qing Cheng Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems , 1996 .

[19]  L. H. Eliasson,et al.  Biasymptotic solutions of perturbed integrable Hamiltonian systems , 1994 .

[20]  D V Treshchëv,et al.  THE MECHANISM OF DESTRUCTION OF RESONANCE TORI OF HAMILTONIAN SYSTEMS , 1991 .

[21]  J. Pöschel On elliptic lower dimensional tori in hamiltonian systems , 1989 .

[22]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[23]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[24]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[25]  Junxiang Xu On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point , 2011 .

[26]  Luigi Chierchia,et al.  Drift and diffusion in phase space , 1994 .

[27]  A. Kolmogorov,et al.  Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .

[28]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[29]  Samuel M. Graff On the conservation of hyperbolic invariant tori for Hamiltonian systems , 1974 .

[30]  Fernando Bertolini,et al.  Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .