Persistence of Hyperbolic-type Degenerate Lower-dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems
暂无分享,去创建一个
[1] B. Fayad,et al. Around the stability of KAM tori , 2013, 1311.7334.
[2] A. Neishtadt,et al. Lagrangian tori near resonances of near-integrable Hamiltonian systems , 2013, 1311.0132.
[3] B. Fayad,et al. KAM-tori near an analytic elliptic fixed point , 2013, Regular and Chaotic Dynamics.
[4] Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerateequilibrium point of a class of planar systems , 2012 .
[5] Junxiang Xu,et al. Persistence of the non-twist torus in nearly integrable hamiltonian systems , 2010 .
[6] J. Pöschel,et al. A lecture on the classical KAM theorem , 2009, 0908.2234.
[7] M. Sevryuk. KAM tori: persistence and smoothness , 2008 .
[8] Mikhail B Sevryuk,et al. Partial preservation of frequencies in KAM theory , 2006 .
[9] Guido Gentile,et al. Degenerate lower-dimensional tori under the Bryuno condition , 2005, Ergodic Theory and Dynamical Systems.
[10] Y. Yi,et al. Persistence of hyperbolic tori in Hamiltonian systems , 2005 .
[11] Y. Yi,et al. Persistence of lower dimensional tori of general types in Hamiltonian systems , 2004 .
[12] G. Gentile,et al. Degenerate Elliptic Resonances , 2004, math/0405420.
[13] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[14] Yong Li,et al. KAM-Type Theorem on Resonant Surfaces for Nearly Integrable Hamiltonian Systems , 2000, J. Nonlinear Sci..
[15] J. You. A KAM Theorem for Hyperbolic-Type Degenerate Lower Dimensional Tori in Hamiltonian Systems , 1998 .
[16] Junxiang Xu,et al. Invariant tori for nearly integrable Hamiltonian systems with degeneracy , 1997 .
[17] Stephen Wiggins,et al. KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable hamiltonian systems , 1997 .
[18] Chong-qing Cheng. Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems , 1996 .
[19] L. H. Eliasson,et al. Biasymptotic solutions of perturbed integrable Hamiltonian systems , 1994 .
[20] D V Treshchëv,et al. THE MECHANISM OF DESTRUCTION OF RESONANCE TORI OF HAMILTONIAN SYSTEMS , 1991 .
[21] J. Pöschel. On elliptic lower dimensional tori in hamiltonian systems , 1989 .
[22] V. Arnold,et al. Dynamical Systems III , 1987 .
[23] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[24] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[25] Junxiang Xu. On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point , 2011 .
[26] Luigi Chierchia,et al. Drift and diffusion in phase space , 1994 .
[27] A. Kolmogorov,et al. Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .
[28] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[29] Samuel M. Graff. On the conservation of hyperbolic invariant tori for Hamiltonian systems , 1974 .
[30] Fernando Bertolini,et al. Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .