Locally optimal heuristic for modularity maximization of networks.

Community detection in networks based on modularity maximization is currently done with hierarchical divisive or agglomerative as well as partitioning heuristics, hybrids, and, in a few papers, exact algorithms. We consider here the case of hierarchical networks in which communities should be detected and propose a divisive heuristic which is locally optimal in the sense that each of the successive bipartitions is done in a provably optimal way. This heuristic is compared with the spectral-based hierarchical divisive heuristic of Newman [Proc. Natl. Acad. Sci. USA 103, 8577 (2006).] and with the hierarchical agglomerative heuristic of Clauset, Newman, and Moore [Phys. Rev. E 70, 066111 (2004).]. Computational results are given for a series of problems of the literature with up to 4941 vertices and 6594 edges. They show that the proposed divisive heuristic gives better results than the divisive heuristic of Newman and than the agglomerative heuristic of Clauset et al.

[1]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[2]  D. A. Bell,et al.  Applied Statistics , 1953, Nature.

[3]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[4]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[5]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[6]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[7]  Pierre Hansen,et al.  Bicriterion Cluster Analysis , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[9]  E. Triphosphat,et al.  FEBS Letters , 1987, FEBS Letters.

[10]  B. Jaumard,et al.  Efficient algorithms for divisive hierarchical clustering with the diameter criterion , 1990 .

[11]  B. Jaumard,et al.  Espaliers: A generalization of dendrograms , 1992 .

[12]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[13]  J.-P. Benzécri,et al.  Rappel : Construction d'une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques , 1997 .

[14]  D. Saad Europhysics Letters , 1997 .

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  A. Châtelain,et al.  The European Physical Journal D , 1999 .

[17]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[19]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[21]  D. Steinley Journal of Classification , 2004, Vegetatio.

[22]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sophia Tsoka,et al.  Robustness of the p53 network and biological hackers , 2005, FEBS letters.

[28]  J. Doye,et al.  Identifying communities within energy landscapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A. Medus,et al.  Detection of community structures in networks via global optimization , 2005 .

[30]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[31]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Hristo Djidjev,et al.  A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection , 2007, WAW.

[34]  Leon Danon,et al.  The effect of size heterogeneity on community identification in complex networks , 2006, physics/0601144.

[35]  Haluk Bingol,et al.  Community Detection in Complex Networks Using Genetic Algorithms , 2006, 0711.0491.

[36]  New Journal of Physics The , 2007 .

[37]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[38]  Jari Saramäki,et al.  Limited resolution and multiresolution methods in complex network community detection , 2007, SPIE International Symposium on Fluctuations and Noise.

[39]  Lazaros G. Papageorgiou,et al.  Finding community structures in complex networks using mixed integer optimisation , 2007 .

[40]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[41]  David Kempe,et al.  Modularity-maximizing graph communities via mathematical programming , 2007, 0710.2533.

[42]  Z. Di,et al.  Accuracy and precision of methods for community identification in weighted networks , 2006, physics/0607271.

[43]  Lars Kai Hansen,et al.  Deterministic modularity optimization , 2007 .

[44]  V. Latora,et al.  Detecting complex network modularity by dynamical clustering. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Yan Qing Niu,et al.  Detecting the community structure in complex networks based on quantum mechanics , 2008 .

[46]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[47]  Amedeo Caflisch,et al.  Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Weixiong Zhang,et al.  Identifying network communities with a high resolution. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Rynson W. H. Lau,et al.  Knowledge and Data Engineering for e-Learning Special Issue of IEEE Transactions on Knowledge and Data Engineering , 2008 .

[50]  Ulrik Brandes,et al.  On Modularity Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[51]  Duanbing Chen,et al.  A fast and efficient heuristic algorithm for detecting community structures in complex networks , 2009 .

[52]  Kevin E. Bassler,et al.  Improved community structure detection using a modified fine-tuning strategy , 2009, ArXiv.

[53]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[54]  N. Stanietsky,et al.  The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity , 2009, Proceedings of the National Academy of Sciences.

[55]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[56]  Juan Mei,et al.  Revealing network communities through modularity maximization by a contraction–dilation method , 2009 .

[57]  Andreas Noack,et al.  Multi-level Algorithms for Modularity Clustering , 2008, SEA.

[58]  J. Brown Behavioral Ecology and Sociobiology , 2019, Encyclopedia of Animal Behavior.

[59]  Pierre Hansen,et al.  Loops and multiple edges in modularity maximization of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[61]  P. Hansen,et al.  Column generation algorithms for exact modularity maximization in networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Physics Reports , 2022 .