Two trigonometric quadrature formulae for evaluating hypersingular integrals

Two trigonometric quadrature formulae, one of non-interpolatory type and one of interpolatory type for computing the hypersingular integral are developed on the basis of trigonometric quadrature formulae for Cauchy principal value integrals. The formulae use the cosine change of variables and trigonometric polynomial interpolation at the practical abscissae. Fast three-term recurrence relations for evaluating the quadrature weights are derived. Numerical tests are carried out using the current formula. As applications, two simple crack problems are considered. One is a semi-infinite plane containing an internal crack perpendicular to its boundary and the other is a centre cracked panel subjected to both normal and shear tractions. It is found that the present method generally gives superior results. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  A. Kaya,et al.  On the solution of integral equations with strongly singular kernels , 1985 .

[2]  Tatsuo Torii,et al.  Hilbert and Hadamard transforms by generalized Chebyshev expansion , 1994 .

[3]  Nikolaos I. Ioakimidis Generalized mangler-type principal value integrals with an application to fracture mechanics , 1990 .

[4]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[5]  E. Ladopoulos On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics , 1987 .

[6]  L. F. Martha,et al.  Hypersingular integrals in boundary element fracture analysis , 1990 .

[7]  D. E. Cormack,et al.  Analysis and evaluation of singular integrals by the invariant imbedding approach , 1992 .

[8]  J. Sládek,et al.  Transient elastodynamic three-dimensional problems in cracked bodies , 1984 .

[9]  Nikolaos I. Ioakimidis On the Numerical Evaluation of a Class of Finite‐Part Integrals , 1983 .

[10]  S. Mukherjee,et al.  Hypersingular and finite part integrals in the boundary element method , 1994 .

[11]  Nao-Aki Noda,et al.  Effect of curvature at the crack tip on the stress intensity factor for curved cracks , 1993 .

[12]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[13]  Philsu Kim,et al.  A quadrature rule for weighted Cauchy integrals , 2000 .

[14]  A. Portela Dual Boundary Element Analysis of Crack Growth , 1993 .

[15]  T. A. Cruse,et al.  Numerical solutions in three dimensional elastostatics , 1969 .

[16]  J. Sládek,et al.  Regularization Techniques Applied to Boundary Element Methods , 1994 .

[17]  L. Gray,et al.  Boundary element method for regions with thin internal cavities. II , 1991 .

[18]  N. Ioakimidis Application of finite-part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity , 1982 .

[19]  Tatsuo Torii,et al.  An algorithm based on the FFT for a generalized Chebyshev interpolation , 1990 .

[20]  Donald E. Cormack,et al.  Singular and Near Singular Integrals in the BEM: A Global Approach , 1993, SIAM J. Appl. Math..

[21]  D. F. Paget,et al.  The numerical evaluation of Hadamard finite-part integrals , 1981 .

[22]  Giuliana Criscuolo,et al.  A new algorithm for Cauchy principal value and Hadamard finite-part integrals , 1997 .

[23]  L. J. Gray,et al.  A Hermite interpolation algorithm for hypersingular boundary integrals , 1993 .

[24]  Nicola Mastronardi,et al.  Some numerical algorithms to evaluate Hadamard finite-part integrals , 1996 .

[25]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[26]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[27]  T. Rudolphi The use of simple solutions in the regularization of hypersingular boundary integral equations , 1991 .

[28]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[29]  L. Schmerr,et al.  Hypersingular Boundary Integral Equations: Some Applications in Acoustic and Elastic Wave Scattering , 1990 .

[30]  Philsu Kim,et al.  A quadrature rule of interpolatory type for Cauchy integrals , 2000 .

[31]  F. G. Tricomi,et al.  ON THE FINITE HILBERT TRANSFORMATION , 1951 .

[32]  D. F. Paget,et al.  A quadrature rule for finite-part integrals , 1981 .

[33]  F. Rizzo,et al.  A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .

[34]  Philsu Kim,et al.  A piecewise linear quadrature of Cauchy singular integrals , 1998 .

[35]  W. S. Hall,et al.  Weighted Gaussian methods for three‐dimensional boundary element kernel integration , 1987 .

[36]  Nikolaos I. Ioakimidis,et al.  Remarks on the Gaussian quadratree rule for finite-part integrals with a second-order singularity , 1988 .

[37]  H. R. Kutt On the numerical evaluation of finite-part integrals involving an algebraic singularity , 1975 .

[38]  Philsu Kim,et al.  A Trigonometric Quadrature Rule for Cauchy Integrals with Jacobi Weight , 2001, J. Approx. Theory.

[39]  W. T. Koiter Discussion: “Rectangular Tensile Sheet With Symmetric Edge Cracks” (Bowie, O. L., 1964, ASME J. Appl. Mech., 31, pp. 208–212) , 1965 .

[40]  G. Tsamasphyros Methods for combination of finite element and singular integral equation methods , 1987 .

[41]  H. R. Kutt The numerical evaluation of principal value integrals by finite-part integration , 1975 .

[42]  Robert Piessens,et al.  The evaluation and application of some modified moments , 1973 .

[43]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[44]  E. Polch,et al.  Traction BIE solutions for flat cracks , 1987 .

[45]  G. Monegato,et al.  Integral evaluation in the BEM solution of (hyper)singular integral equations. 2D problems on polygonal domains , 1997 .

[46]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[47]  George J. Tsamasphyros,et al.  Gauss quadrature rules for finite part integrals , 1990 .

[48]  C. Sun,et al.  The numerical solution of Cauchy singular integral equations with application to fracture , 1994 .