Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data

Studies in graphical perception, both theoretical and experimental, provide a scientific foundation for the construction area of statistical graphics. From these studies a paradigm that has important applications for practice has begun to emerge. The paradigm is based on elementary codes: Basic geometric and textural aspects of a graph that encode the quantitative information. The methodology that can be invoked to study graphical perception is illustrated by an investigation of the shape parameter of a two-variable graph, a topic that has had much discussion, but little scientific study, for at least 70 years.

[1]  William S. Cleveland,et al.  The Shape Parameter of a Two-Variable Graph , 1988 .

[2]  A. Propst Volume 1: How to Analyze Data With Simple Plots , 1987 .

[3]  Allan R. Wilks,et al.  Dynamic Graphics for Data Analysis , 1987 .

[4]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[5]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[6]  Brian W. Kernighan,et al.  GRAP—a language for typesetting graphs , 1986, CACM.

[7]  Gerardine DeSanctis,et al.  Understanding the effectiveness of computer graphics for decision support: a cumulative experimental approach , 1986, CACM.

[8]  Jan Pedersen,et al.  Computing Environments for Data Analysis II. Hardware , 1985 .

[9]  Jan Pedersen,et al.  Computing Environments for Data Analysis I. Introduction , 1985 .

[10]  G. De Soete,et al.  On the Perceptual Salience of Features of Chernoff Faces for Representing Multivariate Data , 1985 .

[11]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[12]  Chris Chatfield,et al.  The Initial Examination of Data , 1985 .

[13]  B. Julesz,et al.  Detection versus Discrimination of Visual Orientation , 1984, Perception.

[14]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[15]  Peter J. Bickel,et al.  S: An Interactive Environment for Data Analysis and Graphics , 1984 .

[16]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[17]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[18]  Lysbeth A. Woolcott,et al.  Charts and Graphs , 1983 .

[19]  P. Macdonald,et al.  Interpreting Multivariate Data , 1982 .

[20]  Leland Wilkinson,et al.  An experimental evaluation of multivariate graphical point representations , 1982, CHI '82.

[21]  Sangit Chatterjee,et al.  New Lamps for Old: An Exploratory Analysis of Running Times in Olympic Games , 1982 .

[22]  J. Hansen,et al.  Climate Impact of Increasing Atmospheric Carbon Dioxide , 1981, Science.

[23]  David R. Cox,et al.  Some Remarks on the Role in Statistics of Graphical Methods , 1978 .

[24]  John C. Baird,et al.  Fundamentals of scaling and psychophysics , 1978 .

[25]  Michael Macdonald-Ross,et al.  How numbers are shown , 1977 .

[26]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[27]  Cecil H. Meyers Handbook of Basic Graphs: A Modern Approach , 1970 .

[28]  Arthur Stanley Hall The construction of graphs and charts , 1958 .

[29]  M. H. Quenouille Approximate Tests of Correlation in Time‐Series , 1949 .

[30]  F. E. Croxton,et al.  Graphic Comparisons by Bars, Squares, Circles, and Cubes , 1932 .

[31]  R. von Huhn,et al.  A Trigonometrical Method for Computing the Scales of Statistical Charts to Improve Visualization , 1931 .

[32]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[33]  A. Burnet Graphic Methods for Presenting Facts , 1915 .